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Using the framework of modern continuum thermomechanics, we develop sharp-
and diffuse-interface theories for coherent solid-state phase transitions. These
theories account for atomic diffusion and for deformation. Of essential impor-
tance in our formulation of the sharp-interface theory are a system of ``configura-
tional forces'' and an associated ``configurational force balance.'' These forces,
which are distinct from standard Newtonian forces, describe the intrinsic material
structure of a body. The configurational balance, when restricted to the interface,
leads to a generalization of the classical Gibbs�Thomson relation, a generaliza-
tion that accounts for the orientation dependence of the interfacial energy density
and also for a broad spectrum of dissipative transition kinetics. Our diffuse-inter-
face theory involves nonstandard ``microforces'' and an associated ``microforce
balance.'' These forces arise naturally from an interpretation of the atomic den-
sities as macroscopic parameters that describe atomistic kinematics distinct from
the motion of material particles. When supplemented by thermodynamically con-
sistent constitutive relations, the microforce balance yields a generalization of the
Cahn�Hilliard relation giving the chemical potentials as variational derivatives of
the total free energy with respect to the atomic densities. A formal asymptotic
analysis (thickness of the transition layer approaching zero) demonstrates the
correspondence between versions of our theories specialized to the case of a single
mobile species for situations in which the time scale for interface propagation is
small compared to that for bulk diffusion. While the configurational force balance
is redundant in the diffuse-interface theory, when integrated over the transition
layer, the limit of this balance is the interfacial configurational force balance
(i.e., generalized Gibbs�Thomson relation) of the sharp-interface theory.

KEY WORDS: Phase transitions; solid-state diffusion; elasticity; generalized
Gibbs�Thomson relation; Cahn�Hilliard theory.
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1. INTRODUCTION

Based on the approach of Gibbs (1878), materials scientists such as Cahn,
Eshelby, Frank, Herring, Larche� , Mullins, and Sekerka have developed
continuum theories for phase transitions in which the interface between
phases is modeled as a surface.3 Of essential importance in these theories
is an interface condition derived variationally as a consequence of an
assumption of local equilibrium; in contrast to all other bulk equations and
interface conditions, this condition, which results from arbitrary variations
of the interface, cannot be identified with one of the standard balances for
mass, force, or energy.

In parallel with the work of the materials scientists, mechanicians such
as Coleman, Ericksen, Toupin, Truesdell, and Noll constructed a frame-
work for general nonlinear theories of continua,4 a framework based on
three principal ingredients:

(i ) balance laws (for mass, momentum, energy, etc.),

(ii ) an imbalance that represents the second law of thermodynamics,

(iii ) constitutive equations.

Here, a careful distinction is maintained between the basic laws embodied
within (i ) and (ii ), which govern a broad spectrum of materials, and the
relations (iii ) that define particular elements within that spectrum. The
basic laws are stated in integral form; when localized, the balances yield
partial differential equations and jump conditions, whereas the imbalance
results in differential and jump inequalities whose chief use is to restrict
constitutive equations. The framework determined by (i )�(iii ) has been
used with great success in developing general theories for large classes of
materials under a wide range of operating conditions. Standard examples
include solids and fluids whose behavior may be elastic, plastic, viscous, or
viscoelastic. More esoteric examples include granular materials, liquid
crystals, and superconductors.

These simultaneous advances in materials science and in continuum
mechanics have for the most part, proceeded independently, with little
interaction, although workers in mechanics have recently become aware of
the wealth of interesting conceptual problems that arise when materials
science is discussed at a macroscopic level. The resulting studies, while
firmly grounded in the framework (i )�(iii ), involve issues that are com-
pletely nonstandard in continuum mechanics. To begin with, a basic tenet
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of continuum mechanics has been that basic laws should be formulated for
given collections of material points; but evolving defect structures, such as
phase interfaces, are composed of different material points at different times
and, as such, possess no intrinsic material identity. Further, continuum
mechanical laws involving energy require generalization to accomodate
expenditures of power resulting from the evolution of the defect structures,
and this in turn requires the introduction of forces that are, in some sense,
work-conjugate to the motion of these structures. Such ``configurational
forces'' have a physical nature far different from that of classical Newtonian
forces (standard forces): configurational forces do not enter the standard
momentum balance laws, nor do they affect the manner in which standard
forces perform work. Further, a conceptual unification occurs when a force
balance, distinct from the standard balance law for linear momentum, is
postulated for configurational forces. This configurational force balance,
while applicable to dynamical theories in the presence of dissipation, is, in
fact, compatible with equilibrium theories derived variationally, as condi-
tions resulting from arbitrary variations of the interface are consistent with
its localization to the interface.

That additional configurational forces may be needed to describe
phenomena associated with the material itself is clear from the work of
Eshelby (1951, 1956, 1970, 1975) and is at least intimated by Gibbs (1878).
Gibbs's discussion is paraphrased by Cahn (1980), as follows: ``solid sur-
faces can have their physical area changed in two ways, either by creating
or destroying surface without changing surface structure and properties per
unit area, or by an elastic strain ... along the surface keeping the number
of surface lattice sites constant ...'' The creation of surface involves con-
figurational forces, while stretching the surface involves standard forces.

To quote Herring (1951) on crystalline materials: ``the principal cause
of surface tension is the fact that surface atoms are bound by fewer
neighbors than internal atoms; surface tension is therefore mainly a
measure of the change in the number of atoms in the surface layer.'' We
interpret this as an indication that surface tension in crystalline materials
is primarily configurational.

The conceptual framework developed by continuum mechanicians
seems almost entirely unknown to materials scientists, and the recent
extension of continuum mechanics to the study of evolving defect structures
seems not well known to the general continuum mechanics community;
this paper, mostly a review, is intended to help remedy this situation.

Here, we discuss the interaction of deformation and composition.
Following Larche� and Cahn (1985), we associate with each point of the
body microstructure defined by a lattice or network through which various
(substitutional and interstitial) species of mobile atoms, characterized by
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their densities, diffuse. We use the framework described by (i )�(iii ) to
develop a thermodynamically consistent, dynamical theory appropriate to
a single phase material, a treatment that we later extend to account for
phase transitions. The underlying balances are balance of mass, balance of
standard forces, and balance of configurational forces; the second law is the
assertion that the energy of each evolving subregion of the body increase
at a rate not greater than the rate at which the standard and configura-
tional forces perform work on the subregion; interfacial free energy is taken
into account; the force systems include forces, such as surface tension, rele-
vant to the mechanics of the interface; the constitutive equations for the
interface account for orientational dependence as well as rate dependence.

An alternative description of solid-state diffusional phase transitions is
based on a rediscovery, by the materials scientists Cahn and Hilliard,5 of
an idea advanced by Fuchs (1888), Rayleigh (1892), and van der Waals
(1893),6 who, in their studies of liquid-vapor transitions, treated the phase
interface not as a surface, but, rather, as a thin layer across which the den-
sity varies continuously but suffers a large gradient. The standard deriva-
tion of this theory begins with the provision of a constitutive equation that
determines the free-energy density as a function of the atomic densities,
their gradients, and the strain. Constitutive dependence upon density
gradients renders problematic the standard assumption that the chemical
potential of a given atomic species be determined by the derivative of the
free energy with respect to the density of that species. To overcome this dif-
ficulty, Cahn (1961) suggested that the chemical potentials be determined
by computing variational derivatives, with respect to the atomic densities,
of the total free energy of the system. The atomic fluxes are then stipulated
to be proportional to the gradients of the chemical potentials and the final
governing equations consist of the atomic balances and the standard force
balance, the latter arising by conventional variational arguments.

Here, we apply the framework (i )�(iii ) to develop a thermodynami-
cally consistent, dynamical, diffuse-interface theory of Cahn�Hilliard type.
The features that most distinguish our approach arise in connection with
our treatment of the atomic densities. Specifically, we interpret the atomic
densities as macroscopic parameters that describe atomistic kinematics dis-
tinct from the motion of material particles. To account for the associated
power expenditures, we introduce microforces. Further, we require that the
microforces affiliated with each atomic species comply with an additional
microforce balance. As an important consequence of our formulation, we
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find that the microforce balances yield expressions for the chemical poten-
tials, expressions that generalize the variational definition advanced by
Cahn (1961).

The notion that the microstructural fields should obey a supplemental
balance is not novel. Oseen (1933) provided a theory for the motion of
liquid crystals that included a vector field describing the average orienta-
tion of the liquid crystalline molecules, a generalized force associated with
the time-rate of that field, and a balance distinct from the standard
momentum balances and involving that force. Later, this approach to
liquid crystals was refined and extended by Ericksen (1960, 1961, 1991)
and Leslie (1968). Following Ericksen's approach, Goodman and Cowin
(1972) developed a theory for flowing granular materials that, to account
for variations in grain distribution, incorporates a scalar volume distribu-
tion function and generalized forces that act over changes in that function
and are constrained by an additional balance. These and other applications
involving microstructural variables, microforces, and microbalances are
discussed by Capriz (1989), Capriz and Podio-Guidugli (1983), and Fried
(1996). An alternate approach in which the microforce balance is a conse-
quence of the principle of virtual power,7 has been used by Fremond (1987,
1992) to construct theories for adherence and damage.

With this diffuse-interface theory there are no free boundaries and,
hence, no interface conditions. There is, however, interfacial structure��as
characterized by the constitutive dependencies on gradients and rates of the
atomic densities. To illustrate the manner by which such structure arises,
we consider a formal asymptotic analysis and show that, as the thickness
of the transition layer tends to zero, the theory approaches a particular
version of the sharp-interface theory developed earlier in the paper. This
analysis provides a recipe that determines the constitutive equations of the
diffuse-interface theory in terms of those of the sharp-interface theory in a
manner that guarantees asymptotic consonance.

2. SOLID STATE DIFFUSION WITH DEFORMATION

2.1. Substitutional and Interstitial Atoms.
Balance Law for Atoms

We consider a homogeneous crystalline body B that occupies a region
of R3. Following Larche� and Cahn (1985), we associate with each point x
of B microstructure defined by a lattice (or network) through which atoms
diffuse.
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We consider A+1 species of atoms, labelled a=0, 1, 2,..., S, S+
1,..., A, and let &a(x, t) denote the atomic density of species a, measured in
atoms per unit volume. We allow for two classes of atomic species: substitu-
tional species, labelled a # [0, 1, 2,..., S], and interstitial species, labelled
a # [S+1, S+2,..., A]. When vacancies are to be considered we reserve
one of the substitutional labels v for vacancies, so that &v represents the
vacancy density. Then, whether or not vacancies are being considered, the
substitutional densities must be consistent with the lattice constraint

:
sub

&a=&sites , where :
sub

&a= :
S

a=0

&a (2.1)

with &sites the density of substitutional sites.
Let P be a part (bounded, regular subregion) of B. Changes in the

number of atoms of a in P are most generally brought about by diffusion
across the boundary �P. This diffusion is characterized by an atomic flux
(vector) ha(x, t), measured in atoms per unit area, per unit time. It is con-
venient to allow also for a (scalar) supply ha(x, t) of a-atoms directly to the
interior points of P; ha(x, t) is measured in atoms per unit volume, per unit
time. The balance law for atoms may then be stated precisely as

}

|
P

&a dv=&|
�P

ha } n da+|
P

ha dv (2.2)

for all species a, where n denotes the outward unit normal to �P, while

}

\|P

&a dv+ (t)=
d
dt |P

&a(x, t) dv(x) (2.3)

Since P is arbitrary, we are led to the local balance law

&* a=&div ha+ha (2.4)

A consequence of the lattice constraint is conservation of substitutional
atoms,

:
sub

&* a= :
sub

(&div ha+ha)=0 (2.5)

A basic assumption of the theory is that the fluxes obey the strong
constraint

:
sub

ha=0 (2.6)
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so that, necessarily,

:
sub

ha=0 (2.7)

The strong constraint ensures that the substitutional transport of atoms
and vacancies involve neither a net flux across any surface nor a net supply
to any region; it ensures satisfaction of (2.5) and hence implies that solu-
tions &a of the atomic balance conserve lattice points.

The strong constraint is discussed by A1 gren (1982) and Cahn and
Larche� (1983). It is a consequence of the requirement that diffusion, as
represented by the substitutional fluxes, arises, microscopically, from
exchanges of atoms or exchanges of atoms with vacancies.

2.2. Mechanics. Small Deformations. Balance of Forces
and Moments. Power

We work within the framework of ``infinitesimal deformations'' as
described by a displacement field u(x, t). We use the following terminology:
the symmetric part

E= 1
2 ({u+{u�) (2.8)

of the displacement gradient {u is the infinitesimal strain; the skew part

W= 1
2 ({u&{u�) (2.9)

is the infinitesimal rotation. We will make use of the decomposition

{u=E+W (2.10)

of the displacement gradient into a strain plus a rotation.
When we wish to emphasize its time-dependent nature, we will refer to

u as a motion; the time-rate u* of u, which represents the velocity of material
points, will be referred to as the motion velocity.

For convenience we neglect inertia, as it is generally unimportant in
solid-state problems involving the interaction of composition and stress.

We associate with each motion of B a system of forces consisting of
a stress (tensor) S(x, t) and a body force (vector) b(x, t). Given any part
P, Sn represents the surface traction (force per unit area) exerted on P

across �P, while b represents the force, per unit volume, exerted directly on
the points of P by agencies exterior to B, for example by gravitational
attraction.
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The balance laws for forces and moments take the form

|
�P

Sn da+|
P

b dv=0, |
�P

x_Sn da+|
P

x_b dv=0 (2.11)

for every part P. As in the derivation of (2.4), we are led to local force and
moment balances

div S+b=0, S=S� (2.12)

Given any part P,

W(P)=|
�P

Sn } u* da+|
P

b } u* dv (2.13)

represents the power expended by the tractions and body forces acting on
P. Using the moment balance (2.12)2 , which implies that S } {u* =
S } (E4 +W4 )=S } E4 , and the force balance (2.12)1 , we find that

W(P)=|
�P

Sn } u* da+|
P

b } u* dv=|
P

S } E4 dv (2.14)

2.3. Energetics

The theory is based on an energy imbalance that represents the second
law of thermodynamics in situations for which all effects��other than those
associated with deformation and the transport of atoms��are neglected. To
discuss this imbalance, we introduce two additional concepts: an energy
density and, for each atomic species, a chemical potential.

We use the term energy in a generic sense. The thermodynamic poten-
tial (free-energy density, etc.) actually involved depends on which thermo-
dynamic theory this purely mechanical theory is meant to approximate.
The current theory is independent of such considerations.

2.3.1. Energy Density. Chemical Potential. The energy den-
sity 9(x, t) represents the energy, per unit volume, of the atomic structure
(atoms and lattice); its integral

|
P

9 dv (2.15)

gives the energy of a part P.
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The chemical potential +� a(x, t) of species a represents the energy the
body would gain per unit time by adding one atom per unit time of species
a at x. Thus

:
A

a=0
\&|

�P

+� aha } n da+|
P

+� aha dv+ (2.16)

gives the net rate at which energy is being added to P: the first term
represents the energy entering P across �P, while the second represents
energy supplied directly to the interior of P.

Granted the strong constraint, for any scalar +*,

:
sub

+� aha= :
sub

(+� a&+*) ha, :
sub

+� aha= :
sub

(+� a&+*) ha (2.17)

the energy transported by substitutional species is therefore invariant under
the subtraction of a species-independent scalar +* from each of the substitu-
tional chemical potentials. Most importantly, +* may depend on both x
and t. Thus the choice of reference potential with respect to which the
substitutional chemical potentials are reckoned is arbitrary. In particular,
taking +*=+� 0, say,

:
sub

+� aha= :
sub

(+� a&+� 0) ha, :
sub

+� aha= :
sub

(+� a&+� 0) ha (2.18)

so that the species a=0 may be accounted for by simply replacing each
substitutional potential +� a by +� a&+� 0.

2.3.2. Energy Imbalance (Second Law). We base the theory
on the energy imbalance

}

|
P

9 dv� :
A

a=0
\&|

�P

+� aha } n da+|
P

+� aha dv++W(P) (2.19)

which asserts that the energy of P not increase at a rate faster than the rate
at which power is expended on P plus the rate at which energy is added
to P via mass transport.

By (2.17), the energy imbalance is invariant under transformations of
the form +� a(x, t) [ +� a(x, t)&+*(x, t) with +* independent of a. Further,
because of the lattice constraint (2.1), we may omit the atomic balance
for the substitutional species a=0, say, and simply define &0=&sites&
(&1+&2+...+&S). Thus and by (2.18), using a change in reference for the
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substitutional chemical potentials in which +*=+� 0 we may, without loss in
generality:

(i ) omit the balance law for atoms of species a=0; and

(ii ) omit mention of species a=0 in the imbalance (2.19) provided
we interpret the substitutional chemical potentials as differences
+� a&+� 0.

We therefore write

+a={+� a&+� 0

+� a

for a substitutional
for a interstitial

(2.20)

so that, by (2.18),

:
A

a=0

+� a ha= :
A

a=1

+aha, :
A

a=0

+� aha= :
A

a=1

+aha (2.21)

To avoid repeated summations, we adopt the convention that summa-
tion with respect to repeated superscripts over the integers [1, 2,..., A] is
implied: if Aa, Ba, and C ab are defined for a, b=1, 2,..., A, then, for
example,

AaBa= :
A

a=1

AaBa, CabBb= :
A

b=1

CabBb (2.22)

In view of (2.21), we may write the energy imbalance more succinctly as

}

|
P

9 dv�&|
�P

+aha } n da+|
P

+aha dv+W(P) (2.23)

and, using the identity (2.14) for W(P), we arrive at the dissipation
inequality

94 &+a&* a&S } E4 +ha } {+a�0 (2.24)

An equivalent form of this inequality, based on the grand canonical potential

|=9&+a&a (2.25)

has the form

|* +&a+* a&S } E4 +ha } {+a�0 (2.26)
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2.3.3. Lyapunov Relations. We assume throughout this subsec-
tion that the external fields b and ha vanish. Then (2.2), (2.13), and (2.23)
yield

} }

|
P

9 dv�&|
�P

+a ha } n da+|
�P

Sn } u* da, |
P

&a dv=&|
�P

ha } n da

(2.27)

Consider the following types of boundaries:

impermeable:
isochemical
dead-loaded:
fixed:

ha } n=0
+a=Ua

Sn=S0 n
u* =0

on �B

on �B

on �B

on �B

for all a

for all a (Ua constant)
(S0=S�

0 constant) = (2.28)

A direct consequence of (2.27) is that, for a fixed and impermeable boundary,

} }

|
P

9 dv�0, |
P

&a dv=0 (2.29)

and the total energy decreases, while the total number of atoms of each
species is conserved.

Consider next a dead-loaded and isochemical boundary. Then

|
�P

+aha } n da=Ua |
�P

ha } n da, |
�P

Sn } u* da=|
�P

S0 } E4 da (2.30)

therefore multiplying the second relation in (2.27) by Ua and subtracting it
from the first, we are led to the inequality

}

|
P

(9&U a&a&S0 } E) dv�0 (2.31)

The term &Ua&* a may be viewed as a decrease in energy per unit volume
per unit time, that results upon removing atoms of chemical potential Ua

at a rate &* a. The inequality (2.31) can be written in an alternative form
involving the grand canonical potential | defined in (2.25):

}

|
P

(|+(+a&Ua) &a&S0 } E) dv�0 (2.32)
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The Lyapunov relations (2.29), (2.31), and (2.32) are a consequence
of the underlying thermodynamic structure; they are independent of con-
stitutive equations. Such global relations furnish a tool for determining
a-priori estimates for solutions of initial�boundary-value problems and
provide a formal justification, within a dynamical setting, of the standard
variational principles used to characterize equilibrium.

2.4. Constitutive theory with atomic densities as
independent variables

We view the balance law for atoms, the force and moment balances,
and the energy imbalance as basic laws, common to large classes of
materials; we keep such laws distinct from specific constitutive equations,
which differentiate between particular materials. In this section we will dis-
cuss general constitutive equations in which the atomic densities appear as
independent variables; in the next section we will consider a conjugate
theory in which this role is played by the chemical potentials.

2.4.1. Standard Treatment for a Single Independent Atomic
Species. To help motivate the general framework within which we
develop constitutive equations we begin with critical discussion of the
standard treatment for a material described by a single independent atomic
species, neglecting deformation and stress.

The simplest constitutive equation for mass transport is the isotropic
Fick's law

h=&M(&) {+ (2.33)

with M(&), the mobility, assumed to be strictly positive to ensure that mass
flows down a chemical-potential gradient. To (2.33) one classically adjoins
``equations of state''

9=9� (&), +=+̂(&) (2.34)

subject to the restriction

+̂(&)=
d9�
d&

(&)=9� $(&) (2.35)

generally derived from variational or thermostatic arguments. Since {+=
}(&) {& with }(&)=+̂$(&)=9� "(&), the definition D(&)=}(&) M(&) allows us
to write (2.33) as

h=&D(&) {& (2.36)

1372 Fried and Gurtin



with D(&) the diffusivity. The balance law (2.4) for atoms and the con-
stitutive equation (2.36) together yield the partial differential equation

&* =div(D(&){&)+h (2.37)

This ``derivation,'' while simple and straightforward, does not provide
a general framework for the formulation of dynamical constitutive rela-
tions. The crucial dependence in the relation (2.36) for the flux h is a
dependence on the density gradient {&. But if the flux is allowed to depend
on the density gradient, then might not such a dependence be important
for the energy and chemical potential. In fact, Truesdell, in discussing the
general formulation of constitutive theories, introduces the following
guidline:8 ``a quantity present as an independent variable in one consti-
tutive equation should be so present in all, unless ... its presence contradicts
some law of physics or rule of invariance.'' As Truesdell and Noll assert:
``This principle forbids us to eliminate any of the `causes' present from
interacting with any other as regards a particular `effect.' It reflects on the
scale of gross phenomena the fact that all observed effects result from a
common structure such as the motions of molecules.''

As a second criticism, the ``state relation'' (2.35) is generally derived
from considerations of equilibrium, but the theory itself, as represented by
the partial differential equation (2.37), is used in situations away from equi-
librium. We take a different approach: we do not introduce an a-priori
notion of equilibrium; instead we use the second law, which in this purely
mechanical theory is represented by the energy imbalance, to obtain con-
stitutive restrictions such as (2.35). The final results, when restricted to a
single independent species, are not much different than those presented
above; however, the underlying theoretical structure provides a self-consis-
tent framework within which more general theories are readily developed.

2.4.2. General Constitutive Theory. Thermodynamic Restric-
tions. We return to the theory with A independent species of atoms
(cf. the paragraph containing (2.20)), and consider a general class of con-
stitutive equations giving the energy, the chemical potentials, the atomic
fluxes, and the stress at any point (x, t) when the atomic densities and their
gradient as well as the first and second displacement gradients are known
at (x, t),9

(9, +, h, S)=F� (&, {&, {u, {{u) (2.38)
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where, for example &=(&1, &2,..., &A). We denote the individual response
functions by 9� , +̂, h� , and S� , so that, e.g.,

9=9� (&, {&, {u, {{u) (2.39)

and assume that these response functions are smooth, with S� =S� � to
ensure compatibility with the moment balance (2.12)2 .

We assume that the response of the body is unaffected by superposed
(infinitesimal) rigid displacements. Such displacements have the form
u0+W0 x with u0 a vector and W0 a skew tensor, and therefore, under a
superposed rigid displacement, {u transforms to {u+W0 , but {{u remains
unchanged. Thus, suppressing the arguments & and {&, F� ({u, {{u)=
F� ({u+W0 , {{u) for all skew W0 , and this yields F� ({u, {{u)=F� (E, {{u).
Thus, letting

G={{u \Gijk=
�2ui

�xj �xk+ (2.40)

we can rewrite (2.38) as

(9, +, h, S)=F� (&, {&, E, G) (2.41)

We do not prescribe constitutive equations for the supplies ha and the
body force b, but allow these fields to be assigned arbitrarily in any manner
consistent with the balance (2.4) for atoms and the balance (2.12)1 for
forces.

Given fields &(x, t) and u(x, t), the constitutive equations embodied in
(2.41) may be used to compute fields 9(x, t), +(x, t), h(x, t) and S(x, t); the
balance laws (2.4) and (2.12)1 then determine the supplies ha(x, t) and the
body force b(x, t) needed to support this constitutive process. The second
law in the form of the dissipation inequality (2.24) remains to be satisfied
in all constitutive processes, a requirement we will use to restrict con-
stitutive equations.

This method of restricting constitutive equations is due to Coleman
and Noll (1963) and is based on the belief that the second law should
hold in all conceivable processes, irrespective of the difficulties involved in
producing such processes in the laboratory. The application of the
Coleman�Noll procedure requires external fields that ensure satisfaction of
the underlying balance laws in all processes. This may seem artificial, but
it is no more so than theories based on virtual work or minimum ``energy,''
as these require arbitrary variations of the fields, even though such varia-
tions are generally inconsistent with the resulting balance laws. The
Coleman�Noll procedure has the same goal as variational approaches: to
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ensure a properly invariant theory consistent with basic physical laws
under the widest possible set of circumstances. In essence the Coleman�
Noll procedure extends to dynamics variational approaches that have been
highly successful in describing equilibrium.

We therefore assume that the dissipation inequality is satisfied in all
constitutive processes, or equivalently, writing z=(&, p, E, G), p={&, and
using the constitutive equations (2.41), that

\�9�
�&a

(z)&+̂a(z)+ &* a+\�9�
�pa

(z)+ } p* a+\�9�
�E

(z)&S� (z)+ } E4

+\�9�
�G

(z)+ } G4 +h� a(z) } {+a�0 (2.42)

with (�9� ��E) ij=�9� ��Eij and (�9� ��G) ijk=�9� ��Gijk . Here {+a is con-
sidered, via the constitutive relation for +a and the chain-rule, a function of
(&, {&, {{&, E, G, {G).

We can always find fields & and u such that &, &* , p={&, p* ={&* ,
{p={{&, u, {u, u* (and, hence, E, E4 ), G={{u, {G={{{u, and G4 ={{u*
have arbitrarily prescribed values at some (x, t). Writing

�9�
�&

(z)=\�9�
�&1 (z),

�9�
�&2 (z),...,

�9�
�&A

(z)+ (2.43)

we conclude that, since &* a, p* a, E4 , and G4 appear linearly in (2.42), their
``coefficients'' must vanish. This yields the following constitutive restrictions:

(i ) the energy, the chemical potentials, and the stress must be inde-
pendent of the density gradients as well as the second displacement
gradient, with

+̂(&, E)=
�9�
�&

(&, E), S� (&, E)=
�9�
�E

(&, E) (2.44)

(ii ) the constitutive equations for h and + must be consistent with
the flux inequality

h� a(&, p, E, G) } {+a�0 (2.45)

These restrictions are also sufficient for the validity of the dissipation
inequality.

2.4.3. Consequences of the Thermodynamic Restrictions.
Immediate consequences of (2.44) are the Maxwell relation

�S�
�&

(&, E)=
�+̂

�E
(&, E) (2.46)
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(which uses obvious analogs of (2.43)) and the Gibbs relations

94 =+a&* a+S } E4 , |* =&&a+* a+S } E4 (2.47)

with | the grand canonical potential as introduced in (2.25). Two identities
that we will find useful are the gradient Gibbs-relations

{9=+a {&a+S : {E, {|=&&a {+a+S : {E (2.48)

where ({E)ijk=�Eij ��xk= 1
2 (Gijk+G jik), and where, for F a second-order

tensor with components Fij and R a third-order tensor with components
Rijk , F : R is the vector with k-th component

(F : R)k=:
i, j

Fij Rijk (2.49)

Let

}ab(&, E)=
�+̂a

�&b
(&, E)=

�29�
�&b �&a

(&, E)

C(&, E)=
�S�
�E

(&, E)=
�29�
�E2 (&, E) = (2.50)

Aa(&, E)=
�S�
�&a

(&, E)=
�+̂a

�E
(&, E)=

�29�
�E �&a

(&, E)

We will refer to }ab(&, E)=}ba(&, E) as the chemistry-composition modulus
for the species a and b, to C(&, E) as the elasticity tensor, and to Aa(&, E)
as the stress-composition (or chemistry-strain) tensor for a. C(&, E) is a
symmetric linear transformation of symmetric tensors into symmetric ten-
sors; the moduli Aa(&, E) are symmetric tensors, and we will term these
nontrivial if, given any (&, E) and any a, Aa(&, E){0. By the chain-rule and
(2.40),

{+a=}ab(&, E) {&b+Aa(&, E) : {E (2.51)

We will refer to the constitutive equation for the atomic flux as quasi-
linear if, for each pair (&, E), the function h� (&, {&, E, G, {G) is linear in the
arguments {& and G. An important example of a quasi-linear constitutive
relation for the atomic flux is (the generalized) Fick's law

ha=&Mab(&, E) {+b (2.52)
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with the matrix of mobility tensors Mab(&, E) positive semi-definite to
ensure consistency with the flux inequality. Here the dependence of the
atomic flux on the arguments {& and G is through (2.51):

ha=&Mab(}bc(&, E) {&c+Ab(&, E) : {E) (2.53)

The second law places no restriction on the general constitutive equa-
tion for the atomic flux other than the flux inequality, but this inequality
has the following important consequence: if the stress-composition moduli
are nontrivial, then the most general quasi-linear constitutive equation of the
form h=h� (&, {&, E, G) is Fick's law. This result is established in Appendix
A; it remains valid if the requirement that the stress-composition moduli be
nontrivial is replaced by the assumption that the matrix of chemistry-
composition moduli be invertible; or, more generally, if the mapping
({&, {E) [ + defined by (2.51) is onto.

2.4.4. Theory in Which the Chemical Potential, Stress, and
Atomic Flux Are Constitutively Linear (Single Independent
Species). Consistent with the assumption of infinitesimal deformations,
we might require that

9=9� (&, E)= f (&)+E } (A(&)+ 1
2 C� E) (2.54)

with constant elasticity tensor C� .10 Further, with a view to dicussing
problems in which the density & remains close to a base value &0 , we might
assume that

f (&)=+0(&&&0)+ 1
2}~ (&&&0)2, A(&)=(&&&0) A� (2.55)

with +0 , }� , and A� constant; the chemical potential and the stress are then
each linear in & and E:

+=+0+}� (&&&0)+A� } E, S=(&&&0) A� +C� E (2.56)

further, granted the additional requirement that the mobility M be con-
stant, the atomic flux has the form

h=&M(}� {&+A� : {E) (2.57)

Despite its simplicity, such a description allows for a nontrivial interaction
between composition and stress.11
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2.5. Constitutive Theory with Chemical Potentials as
Independent Variables

2.5.1. Constitutive Theory. Thermodynamic Restrictions.
A second formulation of the constitutive theory, also important, treats the
chemical potentials as independent variables:

(9, &, h, S)=F� (+, {+, E, G) (2.58)

with 9� , &̂, h� , and S� the individual response functions. The argument leading
to (2.44) and (2.45), here based on the dissipation inequality in the form
(2.26) with |=|̂(+, {+, E, G)=9&+a&a, remains unchanged. The results
are the following constitutive restrictions:

(i ) |̂, &̂, and S� must be independent of {+ and G, with

&̂(+, E)=&
�|̂
�+

(+, E), S� (+, E)=
�|̂
�E

(+, E) (2.59)

(ii ) h� must be consistent with the flux inequality

h� a(+, {+, E, G) } {+a�0 (2.60)

An important result, verified in Appendix A, is that Fick's law

ha=&Mab(+, E) {+b (2.61)

with the matrix of mobility tensors Mab(+, E) positive semi-definite is the
most general quasi-linear constitutive equation of the form h=h8 (+, {+, E, G)
consistent with the flux inequality. Here quasi-linearity is the requirement
that h8 (+, {+, E, G) be linear in {+ and G for each (+, E). It is important
to note that no extraneous assumptions such as the nontriviality of moduli
are needed.

Consider the two formulations: (AD) in which atomic densities are
independent variables; and (CP) in which that role is played by the chemi-
cal potentials. In both cases, we assume compliance with the restrictions
implied by the energy imbalance and we restrict attention to the appro-
priate version of Fick's law. Granted this, the essential assumption yielding
the equivalence of the two formulations is the invertibility of the relation
between the chemical potentials and the atomic densities. We leave the proof
of this assertion to the reader.

The requirement that the relation between the chemical potentials and
atomic densities be invertible is not always satisfied. This is the case when
the response function 9� is strictly convex, which is an assumption often
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imposed when discussing single-phase materials. Phase transitions are
more complicated; here there are two standard models: (i ) the material is
described by two or more strictly convex energy-densities, one for each
phase; (ii ) the material is described by a single energy density, generally a
``multi-well'' potential. In case (i ), it seems reasonable to consider the
formulation (CP) for each phase, and this we shall do. For case (ii ), the
nonconvexity of the energy density renders the assumption of invertibility
unwarranted; and, while the chemical potentials are generally single-valued
functions of the atomic densities, the converse is not true. In this sense
(AD) is more general than (CP).

2.6. Simple Theories. Single Independent Species

2.6.1. Theory in Which the Atomic Density, Stress, and
Atomic Flux are Constitutively linear. Mimicking the linear theory
presented in Section 2.4.4, we might require that

|=|̂(&, E)=&&0(+&+0)& 1
2}~ (+&+0)2+E } ((+&+0) A� + 1

2 C� E) (2.62)

with +0 a base-value of the chemical potential and &0 , }~ , A� , and C� con-
stant,12 in which case the atomic density and the stress pre linear in both
+ and E:

&=&0+}~ (+&+0)&A� } E, S=(+&+0) A� +C� E (2.63)

Provided that

C� =C� &
1
}�

A� �A� , A� =
1
}

A� , }~ }� =1 (2.64)

where for second order tensors B and C with components Bij and Cij ,
A�B is the fourth-order tensor with components

(B�C) ijkl=BijCkl (2.65)

and that the mobility is constant, this theory is equivalent to that presented
in Section 2.4.4.

2.6.2. Theory with Constant Atomic Density and with
Stress and Atomic Flux Constitutively Linear. An important
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specialization of the theory presented in Section 2.6.1 occurs on requiring
that both }~ and A� vanish,

|=|̂(+, E)=&&0(+&+0)+ 1
2E } C� E (2.66)

in which case the atomic density is constant and the stress is independent
of +:

&=&0 , S=C� E (2.67)

Granted a constant mobility M, the governing equations are then

div(M {+)=0, div(C� E)=0, E= 1
2 ({u+{u�) (2.68)

These equations, in which time appears only as a parameter and coupling
between diffusion and deformation is absent, prove useful for describing
bulk material response in phase transitions that proceed slowly in com-
parison to bulk diffusion. A detailed discussion of this application is
provided in Section 3.6.

Under the present specialization, the relations (2.64) between the coef-
ficients }� , A� , and C� of the theory presented in Section 2.4.4 and the coef-
ficients }~ , A� , and C� of Section 2.6.1 fail. The theory discussed here therefore
has no thermodynamically consistent counterpart wherein & and E appear
as independent constitutive variables.

2.7. Basic Theory of Configurational Forces

Much is to be gained by a discussion of configurational forces within
a context that neglects evolving material structures such as defects and phase
interfaces, even though within that context such forces are extraneous to
the solution of actual initial�boundary-value problems.

In classical continuum mechanics the response of a body to deforma-
tion is described by standard forces consistent with balance laws for linear
and angular momentum. Configurational forces are less intuitive: they are
related to the intrinsic coherency of a body's material structure and per-
form work in the addition and removal of material and in the evolution of
structural defects. Following Gurtin and Struthers (1990) and Gurtin
(1995, 1999), we view configurational forces as primitive objects consistent
with their own force balance. Configurational forces defined via the calculus
of variations as derivatives of an energy have been introduced earlier,
e.g., in the classic work of Eshelby (1951) on lattice defects.13 The role of
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configurational forces, however, seems more pervasive and fundamental
than problems susceptible to a variational formulation can indicate.

2.7.1. Configurational Forces and Their Balance. The con-
figurational force system we envisage has two components: a stress C(x, t)
and a force density f(x, t), both distributed continuously over the body.
This system is required to satisfy the configurational force balance

|
�P

Cn da+|
P

f dv=0 (2.69)

for all parts P, a requirement equivalent to the local force balance

div C+f=0 (2.70)

2.7.2. Migrating Control Volumes. Accretion. To charac-
terize the manner in which configurational forces perform work, a means
of capturing the kinematics associated with the transfer of material is
needed. We accomplish this using control volumes P(t) that migrate
through B and thereby result in the transfer of material to P(t) across
�P(t), a process we refer to as accretion.

Parts should not be confused with migrating control volumes P(t),
which are not fixed subregions of B, but instead migrate through B. The
phrase ``transfer of material to P'' is meant in a general sense that allows
also for the ``transfer of material from P,'' and similarly for the phrase
``addition of material to P.''

Let P=P(t) be a migrating control volume with U�P the (scalar)
normal velocity of �P in the direction of the outward unit normal n. To
describe the working associated with the evolution of P(t), we introduce a
field q interpreted as the velocity with which an external agency adds
material to �P. Compatibility then requires that q have U�P as its normal
component,

q } n=U�P (2.71)

but q is otherwise arbitrary.
This discussion should motivate the following definition: an assign-

ment, at each t, of a vector q(x, t) to each position x on �P(t) is a velocity
field for �P if q is a smooth field that satisfies q } n=U�P .

One might ask: Why not use, as velocity field, the vectorial normal
velocity (U�P) n, which is intrinsic? One reason for not doing this is that,
granted smoothness, �P(t) may be parametrized locally in time by a
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function of the form x=x̂(!, t), !=(!1 , !2); the field q(x, t)=�x̂(!, t)��t
then represents a (generally non-normal) velocity field for �P(t).

Let P(t) be a migrating control volume. A velocity field q for �P may
be viewed as a velocity field for particles evolving on the migrating surface
�P, with the trajectory `({) of the particle that passes through position x
on �P(t) at time t the unique solution of

d`

d{
({)=q(`({), {), `({)=x (2.72)

Given a field 8(x, t), its time-rate following the motion of �P, as described
by q, is the derivative with respect to time along such trajectories:

81 (x, t)=
d8
d{

(`({), {)} {=t
(2.73)

By the chain-rule, u# , the corresponding motion velocity following �P,
satisfies

u# =u* +({u) q (2.74)

2.7.3. Versions of the Basic Laws That Account for Accre-
tion. A standard precept of continuum mechanics is that when writing
basic laws for a control volume P, all that is external to P may be accounted
for by the action of forces on P, fluxes across �P, and supplies directly to
P. For a migrating control volume P(t), generalization of the atomic
balance and the energy imbalance is necessary but by no means obvious.
Standard treatments of such laws would augment the terms

} }

|
P(t)

9 dv, |
P(t)

&a dv (2.75)

with the explicit outflow terms

|
�P(t)

9U�P da, |
�P(t)

&aU�P da (2.76)

On the contrary, we view interactions with the material exterior to P(t) in
terms of the working of configurational and standard forces and of the
transfer of mass and energy through accretive and diffusive fluxes. For that
reason our formulations of these laws do not explicitly include the outflow
terms (2.76).
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We begin with our generalization of the atomic balance for a migrating
control volume P(t). We introduce a scalar field Ha for each species a;
HaU�P represents a flux of a-atoms associated with the transfer of material
across �P as it migrates. Both the accretional flux Ha U�P and the atomic
flux ha } n are measured in atoms per unit area and time, but the two fluxes
represent different phenomena: HaU�P represents the flux of a-atoms
associated solely with the gain of atomic sites due to accretion; &ha } n
represents the flow of a-atoms relative to the material. In view of this dis-
cussion, we write the balance law for atoms, for a migrating control volume
P(t), in the form

}

|
P

&a dv=&|
�P

ha } n da+|
P

ha dv+|
�P

H aU�P da (2.77)

We turn next to the generalization of the energy imbalance. As with
the atomic fluxes &ha } n, the accretional fluxes H aU�P give rise to a net
influx of energy, per unit area and time, of amount +aH au�P . Thus

E(P)=&|
�P

+a ha } n da+|
P

+aha dv+|
�P

+aH aU�P da (2.78)

represents the total energy carried into P(t) by diffusion, by direct supply,
and by accretion.

Consider the standard and configurational forces associated with a
migrating control volume P(t), with q a velocity field for �P and u# the
corresponding motion velocity following �P. We view the traction Cn as a
force that performs work in conjunction with the migration of �P and
therefore choose q as an appropriate work-conjugate velocity for Cn.
Classically, the standard traction Sn on �P is work-conjugate to the
motion velocity u* , but �P when migrating has no intrinsic material descrip-
tion, as material is continually being added and removed, and it would
seem appropriate to use as work-conjugate velocity for Sn the motion
velocity u# following �P. Material is added to P(t) only along its boundary
�P(t); there is no transfer of material to the interior of P, nor is there any
change in the material structure. For that reason the configurational body
force f performs no work, while the power expended by the standard body
force b has the form b } u* . We therefore write the working of the standard
and configurational force systems as

W(P)=|
�P

Cn } q da+|
�P

Sn } u# da+|
P

b } u* dv (2.79)
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The energy imbalance for a migrating control volume P(t) therefore
takes the form

}

|
P

9 dv�W(P)+E(P) (2.80)

2.7.4. Consequences of Invariance under Changes in
Velocity Field for �P. The Eshelby Relation. We require that the
energy imbalance be invariant under changes in the choice of velocity field
q describing the motion of �P(t). By (2.71),

q=U�Pn+l (2.81)

with l(x, t) an arbitrary tangential vector field on �P, and, by (2.74), the
working may be written in the form

W(P)=|
�P

Sn } u# da+|
P

b } u* dv+|
�P

n } GnU�P da+|
�P

Gn } l da

(2.82)

with G=C+({u)� S. Since l appears linearly in (2.82), and not elsewhere
in (2.80), the invariance of (2.80) under changes in velocity field is equiv-
alent to the requirement that ��P Gn } l da=0 for all P and all fields l
tangential to �P. Since both P and l are arbitrary, Gn } l=0 for all
orthogonal vectors n and l; thus G=?1 and

C=?1&({u)� S (2.83)

with ? a scalar field (cf. Gurtin 1995). The working therefore has the
intrinsic form

W(P)=|
�P

Sn } u# da+|
P

b } u* dv+|
�P

?U�P da (2.84)

The scalar field ? is a bulk tension that performs work when the volume of
P is increased through the addition of material at its boundary.

A standard transport theorem asserts that, for P(t) a migrating
control volume and 8(x, t) a smooth field,

}

|
P

8 dv=|
P

84 dv+|
�P

8U�P da (2.85)
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Thus, using (2.84) and the symmetry of S, (2.77) and (2.80) may be
rewritten as

|
P

&* a dv=&|
�P

ha } n da+|
P

ha dv+|
�P

(Ha&&a) U�P da

|
P

94 dv�|
�P

(Su* &+aha) } n da+|
P

(b } u* ++aha) dv = (2.86)

+|
�P

(+aH a&9+?) U�P da

Given a time {, it is possible to find a second migrating control volume
P$(t) with P$({)=P({), but with U�P$ , the normal velocity of �P$ at t={,
an arbitrary scalar field on �P$; satisfaction of (2.86) for all such U�P$

implies

?=|, Ha=&a (2.87)

where we have used (2.25). The bulk tension ? therefore coincides with the
grand canonical potential |=9&+a&a; but what is more important, (2.83)
yields the Eshelby relation

C=|1&({u)� S (2.88)

The Eshelby relation, the configurational balance (2.70), and the nota-
tional agreement (2.49) yield the decomposition

f=g+e, {g=&{|+S : {{u
e=&({u)� b

(2.89)

We will refer to g as an internal force, as it is affected by variations in the
grand canonical potential and the displacement gradient; and to e as an
external force as it is affected only by the external body force. Granted the
constitutive equations introduced in Section 2.4, a consequence of the
gradient Gibbs-relation (2.48) is a relation

g=&a {+a (2.90)

showing that internal configurational forces arise in response to spatial
variations in the chemical potentials.

A major difference between the standard and configurational force
systems is the presence of internal configurational forces such as the body
force g. These forces are connected with the material structure of the
body B; corresponding to each configuration of B there is a distribution
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of material and there are internal configurational forces that act to hold
the material in place in that configuration. Such forces characterize the
resistance of the material to structural changes and are basic when discussing
the kinetics of defects.

3. COHERENT PHASE TRANSITIONS WITH
SHARP INTERFACES

We next consider the dynamics of phase interfaces modeled as smoothly
evolving surfaces. We base the discussion on fundamental laws which��when
restricted to control volumes that do not intersect the interface��reduce to
those introduced previously; for that reason the local results established
thus far for the fields u, S, b, C=|1&({u)� S, f, 9, H a=&a, ha, +a,
and ha will be valid in bulk (i.e., away from the interface). Here we con-
centrate on deriving corresponding results for the interface, assuming
throughout that the bulk fields (and their derivatives) have at most jump
discontinuities across the interface.

3.1. Preliminaries

3.1.1. Surfaces and Superficial Fields. We consider a smooth
surface S oriented by a choice of unit normal field m(x).

Crucial to our discussion of interfacial stress is the notion of a superfi-
cial tensor. An example of interfacial stress is surface tension described by
a scalar field _ on S. Let A be a subsurface of S, and let n, a vector field
tangent to S, denote the outward unit normal to the boundary curve �A.
Then _n represents a force (per unit length) exerted on A across �A by
the portion of S that lies outside of A. Thus, as with the standard notion
of stress, surface stress at a point is a linear mapping that assigns a force,
here _n, to a unit normal, here a tangent vector n. More generally, surface
stress is a linear transformation C that maps tangent vectors n into vectors
Cn in R3. (When C represents surface tension, Cn is also a tangent vector,
but, as we shall see, there are more general situations in which Cn need not
be tangent.)

Of interest here are tensor fields T on S with the property that, at
each x on S, T(x) is a linear transformation from the tangent space at x
into R3. These two notions of a tensor field are reconciled by extending
T(x) to all of R3 with the requirement that T(x) annihilate vectors normal
to S. Precisely, a superficial tensor-field T on S associates with each x in
S a linear transformation T(x) from R3 into R3 such that

Tm=0 (3.1)
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A superficial tensor-field T is tangential if, given any vector a, the vector
T(x) a is tangent to S at each x. Introducing the projection

P=1&m� m (3.2)

onto the surface S, each superficial tensor-field T admits the decomposition

T=Ttan +m�t, {Ttan =PT

t=T�m
(3.3)

with the tensor field Ttan and the vector field t both tangential.
The surface gradient {S is defined through the chain rule. Let .(x)

and w(x) be smooth fields on S, with . scalar-valued and w vector-
valued. Then given any curve l({) on S, d.(l({))�d{=({S.(l({))) }
(d l({)�d{) and dw(l({))�d{=({Sw(l({)))(d l({)�d{); the second relation
defines {Sw only on vectors tangent to S, but, in accord with (3.1), {S w
is extended by requiring that ({Sw) m=0. Then {S. is a tangential vec-
tor-field, while {Sw is a superficial tensor-field.

The surface divergence of a vector field w on S is defined by
divS w=tr({Sw); the surface divergence divS T of a superficial tensor-
field T is defined via the identity a } divS T=divS (T�a), where a is an
arbitrary constant vector. Let A denote a subsurface of S with boundary
curve �A, and let n(x), a vector tangent to S at a point x on �A, denote
the outward unit normal to �A. The surface divergence theorem then has
the form

|
�A

t } n ds=|
A

divS t da, |
�A

Tn ds=|
A

divS T da (3.4)

for t a tangential vector field and T a superficial tensor-field, which may or
may not be tangential.

The curvature tensor L and total curvature KS (twice the mean cur-
vature) are defined by

L=&{Sm, KS =tr L=1 } L=P } L=&divS m (3.5)

A classical result is that L is symmetric and (hence) tangential. Granted
this, the general relation divS (a�b)=(divS b) a+({S a) b and (3.5)
yield the identities

divS P=KSm, divS (m�t)=(divS t) m&Lt (3.6)

with t a tangential vector field.
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3.1.2. Evolving Surfaces. Let S(t) be a smooth surface that
evolves smoothly in time, and let VS (x, t) denote the (scalar) normal
velocity in the direction of the unit normal m(x, t). Further, let v(x, t) be
a velocity field for S(t); i.e., a smooth superficial field that satisfies
v(x, t) } m(x, t)=VS (x, t) (cf. Section 2.7.2). As with migrating control
volumes, v may be viewed as a velocity field for evolving particles con-
strained to S, with the path `({) traversed by the particle that passes
through a point x in S(t) at time t the unique solution of (2.72) with
q(`({), {) replaced by v(`({), {). Given a field .(x, t) on S(t), the time-
derivative .q of . following the motion of S, as described by v, is then the
time derivative following such particles:

.q(x, t)=
d.
d{

(`({), {) } {=t
(3.7)

When v has the intrinsic form v=VSm, .q represents the normal time-
derivative of . following S; this derivative applied to m results in the
identity

m
q

=&{SVS (3.8)

Let A(t) denote a smoothly evolving subsurface of S(t) with n(x, t)
the outward unit normal to �A(t). The motion of the curve �A(t) may be
characterized intrinsically by the velocity field

Vm+V�An (3.9)

where V�A is the velocity of �A in the direction of the normal n. More
generally, an assignment of a vector w(x, t) to each x on �A(t) is a velocity
field for �A if w is a smooth field that satisfies w } m=VS and
w } n=V�A , with no constraint placed on the component of w tangential
to �A.

Let 8(x, t) be continuous up to S(t) from either side. Then �8� and
((8)) designate the jump and average of 8 across the interface, while 8\

denote the limiting values of 8; specifically, for x on S(t),

�8�(x, t)=8+(x, t)&8&(x, t),

= (3.10)((8))(x, t)= 1
2 (8+(x, t)+8&(x, t))

8\(x, t)= lim
$ � 0

8(x\$m(x, t), t)
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The following transport theorems are valid for P(t) a migrating control
volume, A(t) the portion of S(t) in P(t), 8(x, t) a field that is smooth up
to the interface from either side, and .(x, t) a smooth superficial field:

}

|
P

8 dv=|
P

84 dv&|
�A

�8� VS da+|
�P

8U�P da

= (3.11)}

|
A

. da=|
A

(.q&.KS VS ) da+|
�A

.V�A ds

3.2. Interface kinematics

We now consider S(t) as an interface separating phases : and ;, and
assume that the subregions of B occupied by : and ; are closed regions
with B as union and S as intersection.

A basic assumption of the theory is that the motion u and the chemi-
cal potentials +a be continuous across the interface:

�u�=0, �+a�=0 (3.12)

The assumption �u�=0 is the requirement that the interface be coherent;14

it yields the compatibility conditions

�u* �+VS �{u� m=0, �{u� P=0 (3.13)

The requirement �+a�=0, often referred to as an assumption of local equi-
librium, allows us to consider the bulk fields +a, when evaluated on S, as
appropriate interfacial chemical-potentials.

Let v be a velocity field for S. The motion velocity following S as
described by v is then the time derivative u

q
defined in (3.7); by the chain

rule and (3.13),

u
q

=u* \+({u\) v=((u* )) +(({u))v (3.14)

Let A(t) denote a smoothly evolving subsurface of S(t) and, for all
sufficiently small =>0, let P=(t) denote the =-pillbox about A(t) (the set of
all points x\$m(x, t) with x in A(t) and 0�$�=). Then P=(t) is a migrat-
ing control volume with A(t) the portion of P=(t) in S(t), and, for 8(x, t)
any of the bulk fields,
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lim
= � 0 |�P=

8U�P=
da=|

A

�8�V da, lim
= � 0 |�P=

8n da=|
A

�8�m da,

= (3.15)}
lim
= � 0 |�P=

8 dv=0

where (3.15)3 follows from (3.11)1 and (3.15)1 .
The velocity fields

v=VSm,
q=U�P n,

uq=((u* )) +VS (({u))m

u# =u* +U�P({u) n
(for S),
(for �P), = (3.16)

are intrinsic for the interface and for the boundary of a migrating control
volume. For these velocity fields and P=(t) an =-pillbox about A(t),

lim
= � 0 |�P=

Cn } q da=|
A

(�C�m) } (VS m) da,

= (3.17)

lim
= � 0 |�P=

Sn } u# da=|
A

(�S�m) } u
q da

We will localize the basic balance laws and the energy imbalance to the
interface using the limit relations (3.15) and (3.17) with P(t) an =-pillbox
P=(t) about an arbitrary evolving subsurface A(t); we will refer to proce-
dures of this type as pillbox arguments.

3.3. Basic Laws

3.3.1. Balance Law for Atoms. We neglect diffusion within the
interface, but, for each species a, allow for a supply ha

S of atoms directly
to the interface from the external world; we therefore write the balance law
for atoms in the form

}

|
P

&a dv=&|
�P

ha } n da+|
P

ha dv+|
�P

HaU�P da+|
A

ha
S da (3.18)

where here and in what follows, A(t) is the portion of S(t) in P(t),

A=P & S (3.19)

This balance must hold for all migrating control volumes P(t) and all
atomic species a; and, since Ha=&a, a pillbox argument yields the interfa-
cial balance

VS �&a�=�ha� } m&ha
S (3.20)
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3.3.2. Standard and Configurational Force Balances at the
Interface. To the force systems discussed previously we add four fields
defined on the interface for all time. Specifically, we add an external force
b to the standard system, and an interfacial stress C, an internal force g,
and an external force e to the configurational system. The fields b, g, and
e have physical interpretations identical to the body forces b, g, and e,
except that b, g, and e are concentrated on the interface. The superficial
tensor field C represents stresses such as surface tension that act within the
interface.

Let P(t) be an (arbitrary) migrating control volume, let A denote the
portion of S in P, and let n denote the outward unit normal to the boundary
curve �A. We introduce the standard force and moment balances

|
�P

Sn da+|
P

b dv+|
A

b da=0

= (3.21)

|
�P

x_Sn da+|
P

x_b dv+|
A

x_b da=0

and the configurational force balance

|
�P

Cn da+|
P

(g+e) dv+|
�A

Cn ds+|
A

(g+e) da=0 (3.22)

By the surface divergence theorem, ��A Cn ds=�A divS C da; pillbox
arguments applied to (3.21) and (3.22) thus yield the interfacial balances

�S� m+b=0, �C� m+g+e+divS C=0 (3.23)

3.3.3. Working. Energy Imbalance. The working W(P) on a
migrating control volume P(t) has two contributions: a contribution (2.79)
associated with the bulk material and a contribution, which we now derive,
that accounts for the interface S(t).

Let q be a velocity field for �P with u# the corresponding motion
velocity following �P, let v be a velocity field for �A with uq the corre-
sponding motion velocity following S, and let w be a velocity field for �A,
where A=P & S. The argument resulting in the terms Cn } q and Sn } u# in
(2.79) here leads us to write the working of the external forces e and b in
the form �A (e } v+b } uq) da. Here uq rather than u* is the work-conjugate
velocity for b, just as u# rather than u* is the conjugate velocity for Sn, and
v is the conjugate velocity for e, just as q is for Cn. Since C acts on P

across �A, it would seem appropriate to take as work-conjugate velocity
for C the field w, which describes the velocity of �A. The field g represents
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internal forces that pin, in place, the material structure at the current loca-
tion of the interface; as this structure is fixed in the reference configuration,
g performs no work (cf. the final paragraph of Section 2.7.4). We therefore
write the working W(P) on a migrating control volume P(t) in the form

W(P)=|
�P

(Cn } q+Sn } u# ) da+|
P

b } u* dv

+|
A

(e } v+b } uq) da+|
�A

Cn } w ds (3.24)

Finally, we generalize the energy flow E(P), defined in (2.78), to
include the flow of energy corresponding to the interfacial supplies ha

S :

E(P)=&|
�P

+aha } n da+|
P

+aha dv+|
�P

+aH aU�P da+|
A

+aha
S da

(3.25)

In addition to the bulk energy 9, we allow for an interfacial energy �,
per unit area, and write the energy imbalance for a migrating control
volume P(t) as

}

|
P

9 dv+|
A

� da�W(P)+E(P) (3.26)

with W(P) and E(P) given by (3.24) and (3.25).

3.3.4. Consequences of Invariance under Changes in Velocity
Field for S and �A. Normal Configurational Balance. We require
that the theory be independent of the choice of velocity fields v for S and
w for �A, an assumption with important consequences regarding the con-
figurational fields b, e, and C.

The only term in the energy imbalance (3.26) involving the tangential
component t=Pv of v, which is arbitrary, is the integral over A in (3.24).
The corresponding integrand may be written as VS(e+(({u)) � b) } m+
b } ((u* )) +(e+(({u)) � b) } t, and since both P and t are arbitrary,
(e+(({u)) � b) must be normal to S:

Pe=&P(({u)) � b (3.27)

Thus (2.88), (3.13)2 , and (3.23)1 imply that

P�Cm�=&P�(({u) P)� S� m

=&((({u)) P)� �S� m=P(({u)) � b=&Pe (3.28)
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Next, since the component of w tangent to �A is arbitrary, invariance
under changes in w yields the requirement that ��A Cn } t ds=0 for every
vector field t tangential to �A. Bearing in mind that P and hence �A is
arbitrary, it follows that, for any x on S(t), (C(x, t) a(x, t)) } d(x, t)=0 for
every pair of orthogonal vectors a and d tangent to S at x, and this yields
the conclusion that the tangential part of C has the form Ctan =_P; thus,
by (3.3), C may be written as

C=_P+m�c (3.29)

The scalar _(x, t) represents surface tension. The vector c(x, t), although
tangential, represents, via the term m�c, forces whose action is normal
to S; c is referred to as the surface shear.

In view of (3.6),

divS C=(_KS +divS c) m+{S _&Lc (3.30)

thus, by (3.28) and since {S _ and Lc are tangential, the normal and
tangential configurational force balances are given by

m } �C� m+_KS +divS c+ g+e=0= (3.31)
{S _&Lc+Pg=0

with

g=g } m, e=e } m (3.32)

The stress in the form (3.29) and the balance (3.31) is due to Gurtin
and Struthers (1990, Eq. (7.5)) (cf. Gurtin 1988). For statical situations
(with C=91 and g=e=0) related results were derived earlier using varia-
tional arguments based on a constitutive equation �=�� (m) for the inter-
facial energy density, with _ and c defined by _=� and c=&��� (m)��m.
In particular, Herring (1951) derived the force balance implied by (3.29) at
triple junctions, while Cahn and Hoffman (1972) showed variationally that
the vector !=_m&c satisfies divS !=�9�. Since m } divS C=&divS !,
this is consistent with (3.31)1 .15 The ``Cahn�Hoffman'' vector ! is widely
used in materials science, which is not surprising, since it is only the normal
component of (3.30) that generally appears in interface conditions. But the
use of ! as a basic (rather than as a derived) object masks the tensorial
nature of interfacial stress, which is classical. In fact, ! is apropos only when
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C has the specific form C=_P+m�c; but, in situations that allow for a
standard stress S on the interface, neither C nor S has this form.

To further relate the Cahn�Hoffman vector ! to the interfacial stress
C, let A=A(t) be a subsurface of the interface with n the outward unit
normal to �A, and let t=m_n, so that t is a unit tangent field on �A.
Then Cn=C(t_m)=t_(_m)+(m�c)(t_m)=t_(_m)&(m�m)(t_c)
=t_(_m&c)=t_! and the external working of the interfacial stress is
given by

|
�A

Cn } w ds=|
�A

(t_!) } w ds

Further, the vectorial counterpart of (3.11)2 yields a transport theorem for
the vector-area measure m da,

}

|
A

m da=|
A

(m
q

&KS VS m) da+|
�A

mV�A ds

which identifies the vector field (m
q

&KSVS m) as the rate at which vector-
area is changing, measured pet unit area. Using this relation and the iden-
tity ! } (m

q
&KS VS m)=&(_KS VS +c } m

q
), the internal working of the

interfacial stress can be written in the simple form

&|
A

(_KS VS +c } m
q

) da=|
A

! } (m
q

&KS VSm) da

and, hence, represents working associated with temporal changes in the
vector-area of the interface.

3.3.5. Interfacial Dissipation Inequality. Our next step will be
to localize, to the interface, the energy imbalance (3.26) with velocity fields
in the intrinsic forms given by (3.16) and (3.9) (for w). Thus let A(t)
denote a smoothly evolving subsurface of S(t) and take P(t) to be the
=-pillbox P=(t) about A(t). Then, by (3.8), divS (VS c)=(VS divS c+
c } {SVS )=(VS divS c&c } m

q
) and therefore, appealing to (3.29),

|
�A

Cn } w ds=|
�A

(_V�A+VSc } n) ds

=|
�A

_V�A ds+|
A

(VS divS c&c } m
q

) da (3.33)
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Thus, by (2.87)2 , (3.11)2 , and (3.12), the pillbox argument applied to P=(t)
yields

|
A

(�
q

&�KS VS ) da+|
�A

�V�A ds

�|
A

(VS �&a�&�ha� } m+ha
S ) +a da

+|
�A

_V�A ds+|
A

(m } �C� m+divS c+e) VS da

+|
A

((�S� m+b) } u
q

&c } m
q

) da (3.34)

hence, using the atomic balance (3.20) and the force balances (3.23)1 and
(3.31)1 ,

|
A

(�
q

+c } m
q

+ gVS &(�&_) KSVS ) da+|
�A

(�&_) V�A ds�0 (3.35)

Given a time {, it is possible to find a second referential control volume
P$(t) with P$({)=P({), but with V$�A(x, {), the normal velocity of the
boundary curve �A$({), an arbitrary scalar field; satisfaction of (3.35) for
all such A$ implies that

_=� (3.36)

and the surface tension and surface free-energy coincide (cf. Gurtin and
Struthers 1990; Gurtin 1991). Thus, since A is arbitrary, (3.35) localizes to
yield the interfacial dissipation inequality

�
q

+c } m
q

+ gVS �0 (3.37)

We close by stating the resulting Lyapunov relations, assuming that the
external forces and supplies vanish and that S(t) is a closed surface. For
a fixed impermeable boundary,

} }

|
B

9 dv+|
S(t)

� da�0, |
B

&a dv=0 (3.38)

while for a dead-loaded, isochemical boundary, we have the inequalities

}

|
B

(9&S0 } E&Ua&a) dv+|
S(t)

� da�0 (3.39)
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and

}

|
B

(|&S0 } E+(+a&U a) &a) dv+|
S(t)

� da�0 (3.40)

The results (3.38) and (3.39) (or its equivalent (3.40)) follow from the
atomic balance (3.20) and the energy imbalance (3.26) with P=B, so that
A=S and �A=<.

3.4. Constitutive Theory. Basic Equations

3.4.1. Bulk Constitutive Equations. For the phases #=: and
#=;, we consider bulk constitutive equations of the type discussed in
Section 2.5, in which chemical potentials serve as independent variables. In
particular, using the superscript (#) rather than a superposed circumflex to
designate the associated response functions, we consider constitutive equa-
tions requiring that, in each phase #:

&=&
�|(#)

�+
(+, E), S=

�|(#)

�E
(+, E), ha=&M(#) ab(+, E) {+b (3.41)

The local form of the second law in bulk is the inequality (2.26), and its
satisfaction is ensured by (3.41) and the requirement that, in each phase #,
the matrix of mobility tensors M(#) ab be positive definite.

3.4.2. Constitutive Equations for the Interface. Regarding
the interface, we consider constitutive equations giving �, c, and g when m,
VS , +, and ({u)\ are known. Let

s=�{u� m (3.42)

A consequence of the compatibility condition �{u� P=0 is that �{u�=
�{u� m� m; the limits ({u)\ are therefore determined by m, the average
(({u)) , and the jump s through the identity ({u)\=(({u))\ 1

2s� m. We
therefore consider smooth constitutive equations of the form

(�, c, g)= f� (m, +, (({u)) , s) (3.43)

with �� , ĉ, and ĝ the individual response functions. Then, arguing as in the
paragraph concluding with (2.41), since the response must be invariant
under superposed (infinitesimal) rigid displacements, (3.43) must be
invariant under transformations ({u)\ [ ({u)\+W0 , with W0 a skew
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tensor. Under this transformation, (({u)) [ (({u))+W0 , but s [ s; thus
(({u)) in (3.43) may be replaced by the average strain ((E)):

(�, c, g)= f� (m, +, ((E)) , s) (3.44)

Consider an arbitrary constitutive process; that is, an evolution S(t)
of the interface together with: (i ) a motion u(x, t) and a list +(x, t) of
chemical potentials defined on B for all t and related to S through the
compatibility conditions (3.12); (ii ) bulk fields |, &, S (and hence 9 and C)
determined by the constitutive equations (3.41); and (iii ) interfacial fields
_=�, c (and hence C), and g determined by (3.44). Given such a con-
stitutive process, the atomic balances (2.4) and (3.20) can be satisfied using
the bulk supply ha and the interfacial supply ha

S ; the standard and con-
figurational force balances (2.12)1 , (2.70), (3.23)1 , and (3.31) (subject to
the invariance requirement (3.27)) can be satisfied using the bulk body
forces b and f, and the interfacial forces b, e, and Pg. All of the above are
arbitrarily assignable, since ha, ha

S , b, b, and e are external, while f and Pg
are indeterminate.

As before, to ensure compatibility of all constitutive processes with the
second law, we require that all constitutive processes be consistent with the
dissipation inequality (3.37). (The local form of the second law in bulk is
(2.26), and its satisfaction is ensured by (3.41).) Letting z=(m, +, ((E)) , s),
this requirement yields

\���
�m

(z)+ĉ(z)+ } m
q

+\���
�+

(z)+ } +
q

+\ ���
�((E))

(z)+ } ((E))
q

+\���
�s

(z)+ } s
q

+ ĝ(z) VS �0 (3.45)

One can always find an evolution of the interface together with a motion
and chemical potentials (consistent with (3.12)) such that m, +, ((E)) , s,

VS , m
q

, +
q

, ((E))
q

, and s
q

have arbitrary values at some given point and

time. Thus, since the left side of (3.45) is linear in V, m
q

, +
q

, ((E))
q

, and s
q

,
the coefficients of these fields must vanish; thus ��� ��((E)) , ��� ��+, ��� ��s,
and g must vanish, while ĉ=&��� ��m.

We are therefore led to the following constitutive restrictions:

(i ) the energy density and shear can depend at most on m, with

ĉ(m)=&
���
�m

(m) (3.46)

with ���m the derivative on the unit sphere.
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(ii ) the normal internal force must vanish identically

g=0 (3.47)

Constitutive equations compatible with these restrictions are the most
general relations of the form (3.44) that are consistent with the dissipation
inequality (3.37).

The quantity &(�+c } m
q

+ gVS ) represents the energy dissipated,
per unit area, by propagation of the interface. Because of (3.45) and (3.46),
the interface is dissipationless, although there is dissipation in bulk resulting
from atomic diffusion.

3.4.3. Basic Equations. If we neglect the external forces b, b, and
e and the atomic supplies ha and ha

S , then the basic equations for the bulk
material are the standard balances

&* a=&div ha, div S=0 (3.48)

supplemented by the constitutive equations (3.41) while the basic equations
for the interface are the conditions of compatibility and local equilibrium
(3.12) and (3.13), the atomic balance and the standard force balance

VS �&a�=�ha� } m, �S� m=0 (3.49)

and the normal configurational force balance

�|&S } E�+�KS +divS c=0 (3.50)

where we have employed the Eshelby relation C=|1&({u)� S together
with the identity m } �({u)� Sm�=�(Sm) } (({u) m)�=�S } E�, which
follows from (3.13)2 , (3.49)2 , and the symmetry of S. By (3.5) and (3.46),
the second and third terms on the left-hand side of (3.50) can be written
as �KS +divS c=(�� (m) 1+�2�� (m)��m2) } L.

If the interfacial energy density is isotropic��that is, if � is constant��
(3.50) reduces to the balance

�|&S } E�+�KS =0 (3.51)

in which interfacial structure is reflected solely through the ``capillarity''
term �KS . Relations of the form (3.50) and (3.51) (as well as (3.56) and
(3.59) given below) may be referred to as ``generalized Gibbs�Thomson
relations.''
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3.5. Generalization of the Theory to Include Dissipation
at the Interface

It would seem reasonable to expect that the exchange of atoms at the
interface would lead to dissipation. To accomodate this we allow for a con-
stitutive dependence on the kinetics of the interface through a dependence
on VS in the interfacial constitutive equations; specifically, we replace,
(3.44) by

(�, c, g)= f� (VS , m, +, ((E)) , s) (3.52)

The argument used to derive (3.46) and (3.47) then yields the constitutive
restrictions (3.46), but (3.47) is replaced by the requirement that the nor-
mal internal force obey the inequality

ĝ(VS , m, +, ((E)) , s) VS �0 (3.53)

If the constitutive relation g= ĝ(VS , m, +, ((E)) , s) is linear in VS , then
consistency with (3.53) requires that this relation have the form

g=&b(m, +, ((E)) , s) VS (3.54)

with b(m, +, ((E)) , s)�0, the kinetic modulus, a constitutive quantity. In
this case the interfacial motion is generally dissipative, with dissipation
gVS =&bV 2

S , per unit area.
Granted (3.46) and (3.54), the normal configurational balance has the

form16

�|&S } E�+�KS +divS c=bVS (3.55)

with b=b(m, +, ((E)) , s), which reduces to

�|&S } E�+�KS =bVS (3.56)

(with b independent of m) when the interfacial energy density and the
kinetic modulus are isotropic.
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3.6. Special Theories

One is often interested in theories appropriate to behavior near a
given list +0 of chemical potentials. One method of generating such theories
is to formally approximate the general equations under the assumption
that the potential differences +a&+a

0 are small. A problem with this proce-
dure is that the resulting approximate equations will generally not lead to
conservation laws and Lyapunov functions, chiefly because the underlying
thermodynamic structure is lost in the approximation. A procedure that
ensures a consistent thermodynamic structure begins with bulk Gibbs func-
tions (of a desired degree of approximation) and uses the thermodynamic
relations (3.41) to define the atomic densities and stresses (cf. Gurtin 1986;
Dav@� and Gurtin 1990).

As an example of this procedure, consider behavior in which the inter-
face moves slowly compared to the time scale for diffusion. Restricting
attention to a single mobile atomic species and assuming, without loss of
generality, that +0=0, such an approximation is generated as an exact
theory within our framework by restricting the Gibbs function of each
phase #=:, ; to be linear in + (cf. Section 2.6.2), with no terms involving
products of + and E,17

|(#)(+, E)=&&#++W (#)(E), &#=constant (3.57)

Then, by (3.41), &=&# in each phase, so that &* =0 in bulk. The basic equa-
tions are then the bulk relations

div ha=0, div S=0 (3.58)

supplemented by the interface conditions

VS �&�=�h� } m, �S� m=0, �&� +=�W&S } E�+�KS +divS c&bV
(3.59)

Here �&� is the constant &;&&: , �W� is the interfacial difference between
W (;)(E) and W (:)(E), and b=0 in the theory of Section 3.4 but not in that
of Section 3.5.

Consistent with the assumption of infinitesimal strains, one might also
restrict attention to linear stress-strain relations as generated by the quad-
ratic strain energy densities

W (#)(E)= 1
2 (E&E#) } C(#)(E&E#) (3.60)

1400 Fried and Gurtin

17 Cf. Gurtin and Voorhees (1993). For computational results based on this theory see
Thompson, Su and Voorhees (1994), Su and Voorhees (1996), and Thompson and
Voorhees (1996).



where C(#), a symmetric positive-definite linear transformation from sym-
metric tensors into symmetric tensors, is the elasticity tensor of phase #, while
E# , a constant symmetric tensor, is the stress-free strain in #. Then, granted
constant bulk mobilities M(#), the bulk constitutive equations take the form

h=&M(#) {+, S=C(#)(E&E#) (3.61)

which, with (3.59), result in linear partial differential equations in bulk.

4. COHERENT PHASE TRANSITIONS WITH
INTERFACIAL LAYERS

We turn now to a theory of phase transitions in which the material is
described by a single nonconvex energy density and for which the interface
between phases is not a sharp surface but, instead is an interfacial layer
across which the physical fields vary smoothly. As such, the theory results
solely in partial differential equations; there are no free boundaries and
hence no interface conditions.

As before, we consider A unconstrained atomic species consistent with
the atomic balance (2.4), and we allow for deformation of the body as
described by a displacement field u and corresponding stress S and body
force b consistent with the standard balances (2.12).

4.1. Microforces. Microforce Balance. Second Law

In the theory discussed thus far the microscopic state at each material
point is described by the atomic densities &a, the atomic fluxes ha, and the
chemical potentials +a. But while the chemical potentials allow for an
accounting of the energy transported as atoms migrate relative to the
underlying lattice, there is no accounting for a corresponding expenditure
of power. To rectify this, we modify the basic framework to include
microforces whose working accompanies atomic diffusion. Indeed, if tem-
poral variations in the densities &a are the macroscopic manifestation
of atomistic kinematics, then it seems reasonable that interatomic forces
be characterized macroscopically by fields that perform work when the &a

undergo change.18 Here it is important to focus attention not on individual
atoms but on arrangements of atoms as represented by the densities.
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18 Our approach (Fried and Gurtin 1993, 1994; Fried 1996; Gurtin 1996) is based on the
belief that laws involving energy should account for the working associated with each
operative kinematical process. The present discussion of the Cahn�Hilliard theory is taken
from Gurtin (1996). Investigations of microstructural evolution use the Cahn�Hilliard
approach include Larche� and Cahn (1992), Leo, Lowengrub and Jou (1998), Miyazaki,
Kozakai and Mizuno (1983), Nishimori and Onuki (1990, 1991), Onuki (1989a, 1989b),
Wang, Chen and Khachaturyan (1993), and Wang and Khachaturyan (1995).



Precisely, we introduce ``microforces'' whose working accompanies
changes in the atomic densities. We describe this working through terms of
the form ( force) &* a, so that microforces are scalar rather than vector quan-
tities. Specifically, the microforce system is characterized by (vector)
microstresses !a together with (scalar) body microforces ?a and #a that
represent, respectively, internal and external forces distributed over the
volume of B. What is most important, this system of forces is presumed
consistent with the microforce balance

|
�P

!a } n da+|
P

(?a+#a) dv=0 (4.1)

for each control volume P, or equivalently

div !a+?a+#a=0 (4.2)

The following arguments, for a single atomic species, might serve as
partial motivation for the microforce balance.

1. At equilibrium, if the total energy has the form E(&)=
�B 9� (&, {&) dv then, for p={&, the requirement $E(&)�$&=0 for
all variations $& that vanish on �B yields the Euler�Lagrange
equation div !+?=0 with !=�9� (&, p)��p, ?=&�9� (&, p)��&.
This represents a statical version of the microforce balance (4.2)
with ! and ? given constitutive representations and #=0. In
dynamics with general forms of dissipation there is no such varia-
tional principle; the use of a microforce balance is an attempt to
extend to dynamics an essential feature of statical theories.

2. Standard forces in continua are associated with macroscopic
length scales, while microforces describe forces associated with
microscopic configurations of atoms. The need for a separate
microforce balance seems a necessary consequence of the disparite
length scales.

The energy imbalance for an arbitrary part P consists of (2.23) with
W(P) modified from the form given in (2.13) to account for the working
of the microforces:

}

|
P

9 dv�|
�P

Sn } u* da+|
P

b } u* dv&|
�P

+aha } n da

+|
P

+aha dv+|
�P

(! } n) &* a da+|
P

#a&* a dv (4.3)
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This imbalance is for the material��lattice plus atoms��and therefore does
not include the working of the ?a, which being forces exerted by the lattice
on the atoms, act internally to the material in P; on the other hand, (4.2)
represents a force balance for atomic arrangements and therefore includes
the action of the ?a. Using the microforce balance and the identity (2.14),
we arrive at the dissipation inequality

94 &S } E4 +ha } {+a+(?a&+a) &* a&!a } {&* a�0 (4.4)

By (2.4) and (4.3), the Lyupunov relations (2.29), (2.31), and (3.23)
are (granted their underlying assumptions) valid without change provided
that |=9&+a&a and provided that, for each species a, #a=0 on B and
(!a } n) &* a=0 (no sum on a) on �B.

4.2. Constitutive Theory. Basic Equations

4.2.1. Constitutive Equations. In the classical theory without
microforces the chemical potentials are given, constitutively, as functions of
densities and strain, but here we wish to consider systems sufficiently far
from equilibrium that a relation of this type is no longer valid; instead we
allow the chemical potentials and their gradients to join the densities and
density gradients in the list of independent constitutive variables. Therefore,
allowing also for constitutive descriptions of !=(!1, !2,..., !A) and ?=
(?1, ?2,..., ?A), we consider constitutive equations of the form

(9, h, S, !, ?)=F� (&, {&, +, {+, E) (4.5)

with 9� , h� , S� , !� , and ?̂ the individual response functions.
Given fields &, +, and u, (4.5) may be used to compute the fields 9,

h, S, !, and ?; the balance laws (2.4), (2.12)1 , and (4.2) then determine the
external fields ha, b, and # needed to support this constitutive process. As
before, we require that the dissipation inequality (4.4) be satisfied in all
such processes. Writing pa={&a, sa={+a, and z=(&, {&, +, {+, E), this is
equivalent to the requirement that the inequality

\�9�
�&a

(z)+?̂a(z)&+a+ &* a+\�9�
�pa

(z)&!a(z)+ } p* a+\�9�
�+a

(z)+ } +* a

+\�9�
�sa

(z)+ } s* a+\�9�
�E

(z)&S� (z)+ } E4 +h� a(z) } {+a�0 (4.6)

hold for all fields &, +, and u, and, arguing as before, we are led to the
following constitutive restrictions:
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(i ) the energy, the standard stress, and the microstress must be inde-
pendent of the chemical potentials and their gradients, the internal
microforce must be independent of the chemical potential gradients,
and

S� (&, {&, E)=
�9�
�E

(&, {&, E)

!� a(&, {&, E)=
�9�
�pa

(&, {&, E) = (4.7)

?̂a(&, {&, E)=+a&
�9�
�&a

(&, {&, E)

(ii ) the constitutive equation for h must be consistent with the residual
inequality

h� a(&, {&, +, {+, E) } {+a�0 (4.8)

Combining (4.7) and the force balance (4.2), and assuming that #
vanishes, yields

+a=
�9�
�&a

(&, {&, E)&div \�9�
�pa

(&, {&, E)+ (4.9)

an expression for the chemical potential that reduces to the classical rela-
tion +a=�9� ��&a when the energy is independent of density gradients and,
more generally, reduces to Cahn's relation giving the chemical potentials as
variational derivatives of the total free energy E(&, u)=�B 9� (&, {&, E) dv
with respect to the densities:

+a=
$E

$&a
(&, u) (4.10)

We henceforth restrict attention to Fick's law in the form

ha=&Mab(&, {&) {+b (4.11)

with the matrix of mobility tensors Mab(&, {&) positive semi-definite.

4.2.2. Partial Differential Equations. Assume that the external
fields vanish: ha=0, b=0, #=0. Then, restricting attention to Fick's law
(4.11), and combining the reduced constitutive relations with the mass and
force balances leads to the general system
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&* a=&div ha, {
ha=&Mab(&, E) {+b

= (4.12)
+a=

�9�
�&a

(&, {&, E)&div \�9�
�pa

(&, {&, E)+
div S=0, S=

�9�
�E

(&, {&, E)

with the strain E as given in (2.8).

4.2.3. Theory for Phase Transitions Involving a Single
Mobile Species. We now restrict attention to a single mobile species,
and, as is customary, refer to its atomic density & as the composition. To
describe phase transitions, we consider energy densities of the simple form

9=9� (&, {&, E)= f (&)+
1
2

*(m) |{&|2+W(&, E), m=
{&

|{&|
(4.13)

with *(m) strictly positive, viz.

*(m)>0 (4.14)

The function f (&) represents the dependence of the energy on composition
when the composition gradients and strains vanish. We assume that f (&) is
a double-well potential that defines the phases. More precisely we assume
that f (&) � +� as & � 0 and as & � 1, and that f (&) may be convexified by
a single line segment between unique compositions &: and &; , 0<&:<
&;<1, so that

+m(&;&&:)= f (&;)& f (&:), +m= f $(&;)= f $(&:) (4.15)

which is the ``Maxwell equal-area rule.''
In a body whose average composition lies between &: and &; , the

double-well structure of f (&) makes compositional distributions consisting
of regions with &=&: and regions with &=&; energetically favorable. The
gradient energy density 1

2*(m) |{&|2 penalizes sharp transitions between such
regions and in so doing facilitates the existence of equilibria in which & is
smooth and B contains interfacial layers separating regions with & close to
&: from regions with & close to &; . The dependence of the *(m) on m renders
certain interfacial orientations energetically more favorable than others.

In accord with the assumption of infinitesimal deformations, we
require that the strain energy density W(&, E) be at most quadratic in E,
so that

W(&, E)=E } ( 1
2 C(&) E+S� (&)) (4.16)

but such an assumption is not relevant to what follows.
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As consequences of (4.13) and (4.16),

+= f $(&)&div \*(m) {&+
1
2

|{&|
�*
�m

(m)++U(&, E) (4.17)

where ���m is the derivative on the unit sphere, while

U(&, E)=
�W
�&

(&, E) (4.18)

and

S=
�W
�E

(&, E) (4.19)

For simplicity, we assume that the mobility is independent of E, {&, and
+, so that

h=&M(&) {+ (4.20)

The partial differential equations of the theory are then the balances

&* =&div h, div S=0 (4.21)

augmented by (4.11) and (4.17)�(4.20).
If we define f� (&)= f (&)& f $(&:)(&&&:), +� =mu&+m , where +m is any

constant, then +& f $(&) is equal to +� & f� $(&) plus the constant +m& f $(&:).
Thus, since + enters the partial differential equations through its gradient,
we may, without loss in generality, replace f (&) in (4.13) by f� (&) and + and
f $(&) in (4.17) by +� and f $(&), and this we shall do. Then, dropping the
overbars, the only change we need make is to replace the Maxwell rule
(4.15) by

f (&:)= f (&;), f $(&:)= f $(&;)=0 (4.22)

Note that, in view of the assumptions made in the paragraph containing
(4.15), &: and &; form a strict minimum-pair for f (&); i.e., f (&)> f (&:)=
f (&;) for &{&: , &; .

4.3. A More General Kinetics

In the theory discussed above atomic diffusion is the sole source of
dissipation. We now sketch a generalization that allows for constitutive
dependences on &* and hence for a more general dissipative structure.
Precisely, we replace (4.5) by constitutive equations of the form

(9, h, S, !, ?)=F� (&, {&, &* , +, {+, E) (4.23)
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Compatibility with the dissipation inequality (4.4) then requires that the
energy, standard stress, and microstress be independent of atomic-density
rates and of the chemical potentials and their gradients, so that, as before,

S� (&, {&, E)=
�9�
�E

(&, {&, E), !a=
�9�
�pa

(&, {&, E) (4.24)

but now the constitutive equations for the internal microforce and atomic
flux are more complicated. Specifically, introducing fields

?a
dis=?a+

�9�
�&a

(&, {&, E)&+a (4.25)

we find ?dis and h, which, by (4.23), depend constitutively on (&, {&, &* , +,
{+, E), must be consistent with the reduced dissipation inequality

ha } {+a+?a
dis&* a�0 (4.26)

We assume that the constitutive equations for h and ?dis=(?1
dis , ?2

dis ,...,
?A

dis) are linear in &* and {+, and independent of +:

ha=&Mab(&, {&, E) {+b&bab(&, {&, E) &* b= (4.27)
?a

dis=&aab(&, {&, E) } {+b&Bab(&, {&, E) &* b

with overall coefficient matrix positive semi-definite. If we ignore coupling
effects by setting the coefficients bab(&, {&, E) and aab(&, {&, E) equal to
zero, then, granted #=0, the microforce balance (4.2) yields a relation,

+a=
�9�
�&a

(&, {&, E)&div \�9�
�pa

(&, {&, E)++Bab(&, {&, E) &* b (4.28)

giving +a as the variational derivative $E�$&a plus a term Bab(&, {&, E) &* b

reflecting kinetics.
A simple extension involving a single mobile species that accounts for

kinetics arises on taking (4.20) in conjunction with ?dis of the form

?dis=|{&| B(m) V (4.29)

with B(m)�0, m as defined in (4.13)2 , and

V=&
&*

|{&|
(4.30)
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4.4. Configurational Forces

The approach taken to configurational forces in Section 2.7 is readily
adapted to the present context. On doing so, we arrive at a generalization

C=|1&({u)� S&{&a�!a (4.31)

of the Eshelby relation (2.88). Using this expression for C in the configura-
tional balance div C+f=0, we obtain a representation

f=g+e, {g=&{|+S : {{u+({{&a) !a&?a {&a

e=&({u)� b&#a {&a
(4.32)

for the configurational force f, which generalizes (2.89).
Further, granted the constitutive relations (4.24) and the definition

(4.25), a direct calculation yields

g=&a {+a&?a
dis {&a (4.33)

Consider a single mobile species, with 9 and ?dis as specified in (4.13)
and (4.29)2 , and restrict attention to a region where the gradient {& of the
composition is nonvanishing. Since m is well-defined in such a region, we
may compute the component of the configurational balance in its direction;
doing so, we obtain the equation

m } (div Cbu+& {+)+9xsK+div cxs+ g+div(@xsm)=0 (4.34)

with m and V as defined in (4.13) and (4.30)3 , and

Cbu=(W(&, E)&+&) 1&({u)�
�W
�E

(&, E)

(4.35)

9xs= f (&)+
1
2

*(m) |{&|2

cxs=&
1
2

|{&| 2 �*
�m

(m)

gxs=&|{&|2 B(m) V

@xs= f (&)&
1
2

*(m) |{&|2

and

K=&div m (4.36)
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Since, for level sets (surfaces) of & within the region in question, m and V
define a unit normal field and a corresponding scalar normal velocity, a
formal comparison of (4.34) with the normal configurational balance (3.55)
suggests that, granted an appropriate scaling and averaging over the
region, the terms m } div Cbu, 9 xsK, div cxs, and gxs should correspond to
�|&S } E�, �KS , divS c, and &bVS , respectively. This being the case,
complete correspondence of (4.34) to (3.55) would require that the terms
m } (&{+) and div(@xsm) be negligible when scaled and averaged appro-
priately over the region in question.

5. SHARP-INTERFACE LIMIT OF THE THEORY INVOLVING A
SINGLE MOBILE SPECIES

We now examine the correspondence between the theory with non-
sharp interfaces and the more standard sharp-interface theory,19 restricting
attention to the case of a single mobile species and leaving until the end
any discussion of kinetic effects, as introduced in Section 4.3. In particular,
we will show that the equations of the sharp-interface theory discussed in
Section 3.6 may be considered as the formal asymptotic limit of the equa-
tions of Section 4.2.3, granted the additional assumption

U(&# , E)=0, #=:, ; (5.1)

5.1. Scaling

We let " and $ denote scale factors associated with the constitutive
functions W and *. Then, letting L denote a characteristic length and T a
characteristic time, we assume that " and $ yield a small dimensionless
modulus

0<==
$

"L2<<1 (5.2)

and, labeling the dimensional (unscaled) fields with asterisks, introduce the
dimensionless independent variables

x=
x*
L

, t=
t*
T

(5.3)
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to derive the ``generalized Gibbs�Thomson relation.''



dependent variables

u=(x, t)=
u*(x*, t*)

L
, S=(x, t)=

S*(x*, t*)
" = (5.4)

&=(x, t)=&*(x*, t*), +=(x, t)=
+*(x*, t*)

"
, h=(x, t)=

Th*(x*, t*)
L

and constitutive functions

W(&= , E=)=
W*(&*, E*)

"
, U(&= , E=)=

U*(&*, E*)
"

, f (&=)=
$f *(&*)

"2L2 = (5.5)

*(m=)=
**(m*)

$
, M(&=)=

L2"M*(&*)
T

where the dependence of the fields on the parameter = has been made
explicit and the quantities without asterisks in (5.5) are assumed to be of
O(1) in =.

With this scaling, the free energy density is given by

9==&1f (&=)+ 1
2 =*(m=) |{&= |2+W(&= , E=) (5.6)

and the governing field equations are

&* ==&div h= , div S==0 (5.7)

with h= and S= as determined by

h==&M(&=) {+=

= (5.8)
+===&1f $(&=)&= div \*(m=) {&=+

1
2

|{&= |
�*

�m=
(m=)++U(&= , E=)

S==
�W
�E

(&= , E=)

5.2. Constitutive Connections

We now show that the formal asymptotic limit, as = � 0, of the partial
differential equations defined by (5.6) and (5.7) is the sharp interface theory
of Section 3.6 with

M(#)=M(&#), W (#)(E)=W(&# , E) (5.9)
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for #=:, ;, so that, in bulk,

|=|(#)(+, E)=&&#++W (#)(E), h=&M(#) {+

= (5.10)
S=S(#)(E)=

�W (#)

�E
(E)

Here it is tacit that the theory of Section 3.6 has been rendered dimen-
sionless by an approach analogous to that taken in Section 5.1.

Regarding the interface, we assume that the response function ��
delivering the interfacial energy density in the sharp-interface theory is
related to the gradient energy modulus * through

�� (m)=- *(m) |
&;

&:

- 2f (&) d& (5.11)

Given a particular choice of constitutive equations within the sharp-
interface theory developed in Section 3, the analysis that we present in the
sequel will show that the constitutive connections (5.9)�(5.11) imply that
the partial differential equations of the theory at hand are formally
asymptotic, in the limit as = � 0, to the bulk and interfacial partial differen-
tial equations of the sharp-interface theory. While we do not do so here,
it can also be shown that these constitutive connections also imply con-
sonance of the integral statements of balance of the two theories and of the
local and global expressions for dissipation imbalance (cf. Fried and Gurtin
1996; Fried 1997; Fried and Grach 1997).

5.3. Expansions

Hereafter, we focus on a fixed portion R of B that, over some time
interval, consists of three evolving subregions: R:

= , S= , and R;
= . At each

time t, S=(t) is a transition layer comprised of points x in B with &:<
&=(x, t)<&; , while R:

= (t) and R;
= (t) consist of points x with &=(x, t)r&: and

&=(x, t)r&; , respectively. We assume that the limit

S= lim
= � 0+

S= (5.12)

exists, with S(t) a smoothly evolving surface and with

R=R:(t) _ S(t) _ R;(t) (5.13)

with R#(t)=lim= � 0 R#
=(t) for #=:, ;.
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We insist that the chemical potential +=(x, t) and the motion u=(x, t)
have limits as = � 0,

lim
= � 0

+=(x, t)=+(x, t), lim
= � 0

u=(x, t)=u(x, t) (5.14)

except possibly on S(t). Further, we require that the chemical potential += ,
its gradient {+= , and the strain E= be bounded as = � 0.

Granted constitutive equations under which the atomic flux tends to
infinity with the chemical-potential gradient and the stress with the strain,
these hypotheses are actually consequences of the inner expansions for &=

and u= in conjunction with with the balances (5.7) applied within the layer.
We write d(x, t) for the signed distance between a point x in R and the

surface S(t), with d(x, t)<0 in R:
=(t) and d(x, t)>0 in R;

= (t). Then

m(x, t)={d(x, t) and VS (x, t)=&d4 (x, t) (5.15)

represent a unit normal-field and corresponding scalar normal-velocity-
field for S(t). We also assume that d(x, t) is smooth within S=(t) and
that given any x on S=(t), there is a unique z on S(t) with z=x&
d(x, t) m(x, t). The mapping x [ (d(x, t), z(x, t)) is then one-to-one on
S=(t); further, m(x, t) and VS (x, t) are well-defined and independent of
d(x, t) at each x in S=(t): m(x, t)=m(z, t), VS (x, t)=VS (z, t). Thus,
writing {S and divS for the surface gradient and surface divergence on S,
the curvature tensor L and the total curvature KS for S,

L=&{Sm, KS =tr L=&divS m (5.16)

L(x, t)=L(z, t), KS (x, t)=KS (z, t).
Within S=(t), we stretch the coordinate normal to S(t) by letting

r(x, t)==&1d(x, t) (5.17)

and, in accord with this, we assume that the thickness h=(t) of S=(t) tends
to zero with =, but at slightly slower rate, viz.

lim
= � 0

h==0, lim
= � 0

(=&1h=)=+�, lim
= � 0

(=&1h2
= )=0 (5.18)

For the fields '==u= and '==&= , we introduce an outer expansion

'=(x, t)='out
0 (x, t)+='out

1 (x, t)+O(=2) (5.19)

assumed valid within the regions R:
= and R;

= , and an inner expansion

'=(x, t)=' in
0 (r(x, t), z(x, t), t)+=' in

1 (r(x, t), z(x, t), t)+O(=2) (5.20)
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assumed valid within the layer; here, 'out
0 (x, t), 'out

1 (x, t) and ' in
0 (r, z, t),

'in
1 (r, z, t) are smooth, bounded functions of their arguments. We further

assume that these expansions are twice formally differentiable in their
arguments in the sense that {'=={'out

0 +={'out
1 +O(=2) for the outer

expansion and, on letting '� = denote the partial derivative of '= with respect
to r, '� =='� in

0 +='� in
1 +O(=2) for the inner expansion, and so forth.

Hence, we do not presume that S=(t) is disjoint from R#
=(t): the regions

S=(t) & (R:
= (t) _ R;

= (t)) of overlap represent sets where the outer and inner
expansions agree. In particular, we have the matching condition

('out
0 )\ (x, t)= lim

d(x, t) � 0\
'out

0 (x, t)= lim
r � \�

' in
0 (r, z, t)=(' in

0 )\ (r, z, t)

(5.21)

relating the O(1) terms of the inner and outer expansions for '= within the
overlap region.

In terms of the variables (r, z), the derivative with respect to z holding
r fixed may be identified with the gradient {S on S. Let

P=1&m�m, M==&{m (5.22)

(The dependence of M= on = will become clear.) Then, since z(x, t)=
x&d(x, t) m(x, t),

{z=P+dM= (5.23)

Since |d |�h==o(1) and d� ==, differentiating m(z(x, t), t) with respect to x
results in the conclusions

M==(1&dL)&1 L=L+o(1), M� ===(1&dL)&1 LM==O(=) (5.24)

Thus, for 8 and v scalar- and vector-valued fields,

{8==&18� m+(1+dm=) {S 8==&18� m+(1+o(1)) {S 8 = (5.25)
{v==&1v� �m+({Sv)(1+dm=)==&1v� �m+(1+o(1)) {S v

so that

{{8==&28� m�m+=&1(1+o(1))({S 8� �m+m�{S 8� &8� L)

+({S{S 8) O(1)+O(1) {S8 (5.26)

with the O(1) and o(1) estimates in (5.25) and (5.26) being of appropriate
tensorial order and independent of 8 and v.
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5.4. Asymptotic Results

5.4.1. Coherency, Compatability, Local Equilibrium. By
(5.25), E===&1E in

&1+O(1), 2E in
&1=u� in

0 �m+m�u� in
0 , and the assumption

that E= be bounded as = � 0 yields the conclusion that u in
0 must be

independent of r. Thus, the matching requirement (5.21) implies that
�uout

0 �=�u in
0 �=0, where �'�='+&'&, and, by (5.14)2 , we arrive at the

coherency condition

�u�=0 (5.27)

Further, since u� in
0 =0, (5.25)2 and (5.15)2 yield

{u=={Su in
1 +u� in

1 �m+O(=), u* ==u* in
0 &VS u� in

1 +O(=) (5.28)

and we have the compatibility conditions

�u* �+VS �{u� m=0, �{u� P=0 (5.29)

Some care is needed in establishing the estimate for u* (r, z, t), which is
the derivative of u=(r, z, t) with respect to t holding x fixed. Indeed, while
the partial derivative of u=(r, z, t) with respect to r is well-defined, the par-
tial derivative of u=(r, z, t) with respect to z (holding t fixed) is not, since
z # S(t), but we can write u* =(r, z, t) as =&1u� (r, z, t) d4 (x, t) plus an O(1)
term; namely, the derivative of u=(r, z(x, t), t) with respect to t holding r
and x fixed.

As an additional consequence of the r-independence of u in
0 , we obtain

E==E in
0 +O(=), E in

0 = 1
2 ({Su in

0 +({S u in
0 )�)+ 1

2 (u� in
1 �m+m�u� in

1 )

(5.30)

Consider, now, the form of the chemical potential += away from the
layer. Inserting the outer expansions of &= and u= in (5.8)2 , we find that

+===&1+out
&1+O(1), +out

&1= f $(&out
0 ) (5.31)

The assumed boundedness of += therefore requires that +out
&1= f $(&out

0 )=0,
so that, since f (&) is a double-well potential with equal minima at &:

and &; ,

&out
0 ={&:

&;

on R:
=

on R;
=

(5.32)
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Thus, by (5.1), the outer expansion for += becomes

+==+out
0 +O(=), +out

0 = f "(&out
0 ) &out

1 (5.33)

Next, to determine the form of the chemical potential += within the
layer, we note that, from (5.25)1 ,

{&===&1&� in
0 m+{S & in

0 +&� in
1 m+O(=) (5.34)

whence |{&= |==&1&� in
0 +&� in

1 +O(=), and, granted that &� in
0 is nonvanishing,

m==
{&=

|{&= |
=m+O(=) (5.35)

and

P==1&m=�m==P+O(=) (5.36)

Thus, employing 05.30), (5.34), and (5.35) in (5.8)2 , we find that += has an
inner expansion of the form

+===&1+ in
&1+O(1), + in

&1= f $(& in
0 )&*(m) &� in

0 (5.37)

But += must be bounded as = � 0. Hence, bearing in mind the matching
condition (5.21) and the result (5.32), & in

0 must satisfy the boundary-value
problem

*(m) &� in
0 = f $(& in

0 ), {
lim

r � &�
& in

0 (r, } , } )=&:

(5.38)
lim

r � +�
& in

0 (r, } , } )=&;

and the far-field conditions &� in0 (\�, } , } )=&� in
0 (\�, } , } )=0. The assumed

properties of * and f guarantee that (5.38) possesses a unique solution & in
0

that increases monotonically from the value &: at r=&� to the value &;

at r=+�.
Now, since + in

&1=0, the inner expansion for += becomes

+==+ in
0 +O(=) (5.39)

where, by (5.30), (5.34), (5.35), (4.14)2 , and (5.8)2 ,

+ in
0 = f "(& in

0 ) & in
1 &*(m) &� in

1 &divS \&� in
0 \*(m) m+

1
2

�*
�m

(m)++
&({S&� in

0 ) } \ �*
�m

(m)+ (5.40)
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Finally, arguing as in the proof of (5.27), the presumed boundedness of {+=

yields the condition of local equilibrium

�+�=0 (5.41)

for the limiting value of the chemical potential.

5.4.2. Implications of the Bulk Constitutive Connections.
Granted the provisions of Section 5.2, the results (5.32) and (5.33) guaran-
tee that, in the the bulk regions R#

= (#=:, ;),

&==&#+O(=), +==+out
0 +O(=), E=Eout

0 +O(=) (5.42)

and hence

W(&= , E=)=W(&# , Eout
0 )+O(=)=W (#)(E)+O(=)

W(&= , E=)&+=&==W(&# , Eout
0 )&+out

0 &#+O(=)=|(#)(+, E)+O(=)= (5.43)

M(&=)=M(&#)+O(=)=M(#)+O(=)

5.4.3. Energy Partition Within the Layer. Granted the bound-
ary conditions (5.38)2, 3 , the differential equation (5.38)1 possesses a first
integral

1
2*(m) |&� in

0 | 2= f (& in
0 ) (5.44)

which we interpret as an expression of energy partition (to most significant
order in =), between the double-well potential f (&=) and the gradient energy
density 1

2*(m=) |{&= |2, within the layer. Since f (&) and f $(&) vanish at
&=&: , &; , & in

0 must decay according to

&� in
0 (r, } , } )=O(e&c |r|) as |r| � � (5.45)

with c>0 independent of r. Hence, &� in
0 is, as a function of r, square-

integrable on (&�, +�), and, drawing upon (5.44) and (5.38),

|
+�

&�
- *(m)| &� in

0 (r, } , } )|2 dr=|
&;

&:

- 2f (&) d& (5.46)

a result that, granted (5.11), implies the identities
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|
+�

&�
*(m) |&� in

0 (r, } , } )|2 dr=�� (m)

= (5.47)
1
2 |

+�

&�

�*
�m

(m) |&� in
0 (r, } , } )|2 dr=

���
�m

(m)

Next, since, m=={&= �|{&= |, a straightforward calculation shows that
|{&= | {m==P={{&= . This identity and (5.26) have two useful consequences.
Firstly, since P=m=O(=),

{m==O(1), m� ==O(=) (5.48)

Secondly, ({m=) P=={S m+o(1); therefore, since div m==tr {m==
tr(({m=) P=),

div m==&KS +o(1) (5.49)

5.4.4. Atomic Balance. Standard Force Balance. From
(5.32), (5.33), (5.8)1 , and (5.43)3 , the terms of the atomic balance (5.7)1

admit the bulk estimates

&* ==O(=), div h==&div(M(&#) {+out
0 )+O(=) (5.50)

on R#
= (#=:, ;); hence, by (5.43)3 , in the region occupied by phase #,

h=lim= � 0 h= satisfies

div h=0 (5.51)

with

h=&M(#) {+ (5.52)

Next, since +� in
0 =0, (5.15)2 , (5.39), (5.8)1 , and (5.43)3 yield estimates

$ $
&* ==&=&1VS& in

0 +O(1), div h==&=&1(M(& in
0 )({S+ in

0 ++� in
1 m)) } m+O(1)

(5.53)

within the layer. Thus, by (5.18)

|
+h=

&h=

&* =d(=r)=&VS �& in
0 �+o(1)=&VS �&�+o(1)

= (5.54)
|

+h=

&h=

div h= d(=r)=&�M(& in
0 )({S+ in

0 ++� in
1 m)� } m+o(1)

=�h� } m+o(1)
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hence, bearing in mind (5.7)1 , the limiting fields must satisfy

VS �&�=�h� } m (5.55)

on S.
A similar argument shows that the limiting stress field S=lim= � 0 S=

satisfies

div S=0, S=
�W (#)

�E
(E), E=

1
2

({u+{u�) (5.56)

in the region occupied by phase # and

�S� m=0 (5.57)

on S.

5.4.5. Normal Configurational Force Balance. To derive the
normal configurational balance of the sharp-interface theory, we consider
the normal component (4.34) of the configurational balance of the theory
at hand, modified appropriately so as to reflect the scaling in Section 5.1
and the present absence of kinetics, viz.

m= } (div Cbu
= +&={+=)+9 xs

= K=+div cxs
= +div(@xs

= m=)=0 (5.58)

with

Cbu
= =(W(&= , E=)&+=&=) 1&({u=)

�
�W
�E

(&= , E=)

(5.59)

9 xs
= ==&1f (&=)+

1
2

=*(m=) |{&= |2

K==&div m=

cxs
= =&

1
2

= |{&= |2 �*
�m=

(m=)

@xs
= ==&1f (&=)&

1
2

=*(m=) |{&= |2
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We consider each term of (5.58) separately. First, from the inner
expansion of &= , (5.30), (5.39), (5.40), (5.44), (5.8)2, 3 , and (5.43)1, 2 , we
have the estimate

m= } (div Cbu
= +&={+=)

$
==&1m } (|(#)(+ in

0 , E in
0 ) 1&({u in

0 )� S(#)(E in
0 )) m+O(1) (5.60)

so that

|
+h=

&h=

m= } (div Cbu
= +&= {+=) d(=r)

=m } �|(#)(+ in
0 , E in

0 ) 1&({u in
0 )� S(#)(E in

0 )� m+o(1)

=m } �|1&({u)� S� m+o(1)

=�|&S } E�+o(1) (5.61)

Next, since &� in0 , as in function of r square-integrable on (&�, �), for
8=o(1),

=&1 |
h=

&h=

|&� in0 |2 8 dr=o(1) (5.62)

By (5.34), (5.35), and (5.44),

9 xs
= ==&1*(m) |&� in0 | 2+O(1) (5.63)

so that, appealing to (5.47)1 , (5.49), and (5.62),

|
+h=

&h=

9 xs
= K= d(=r)=�� (m) KS +o(1) (5.64)

Further, since �*(m=)��m= # m=
= , while �2*(m=)��m2

= is a linear trans-
formation of m=

= into itself, (5.25), (5.39), and (5.48) yield

div cxs
= =&

1
2

= |{&= |2 \ �2*
�m2

=

(m=)+ } (({m=) P=)&=((P={{&=) {&=) }
�*

�m=
(m=)

=
1
2

=&1 |& in
0 |2 \{S m } \ �2*

�m2
=

(m)++o(1)++O(1) (5.65)

thus, since divS (�*(m)��m)={Sm } (�2*(m)��m2) is independent of r, we
may use (5.62) and (5.47)2 to conclude that

|
+h=

&h=

div cxs
= d(=r)=divS c+o(1) (5.66)
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As our final estimate, we will prove that

|
+h=

&h=

div(@xs
= m=) d(=r)=o(1) (5.67)

By (5.25)1 ,

$
{&= ==&1&� in

0 m+O(1), {S ( |{&= |2)=O(=&1) (5.68)

Thus, since f (& in
0 )= 1

2*(m) |&� in
0 |2, f $(& in

0 )=*(m) &� in
0 , m==m+O(=), and

m� ==O(=),

@xs
= = f $(& in

0 ) & in
1 &O(1) |&� in

0 | 2&*(m) &� in
0 &� in

1 +O(=)=O(1)

= (5.69)
$

@xs
= =O(1), m= } ({S @xs

= )=O(1)

Therefore, using (5.25)2 ,

$ $
div(@xs

= m=)==&1m } (@xs
= m=)+(1+o(1)) divS (@xs

= m=)==&1@xs
= +O(1)

(5.70)

so that

|
+h=

&h=

div(@xs
= m=) d(=r)=@xs

= | r=+�
r=&�+o(1) (5.71)

and, since f $(& in
0 ) and &� in0 approach zero as r � \�, (5.67) follows.

Finally, integrating (5.58) from =r=&h= to =r=+h= , we find, with the
aid of the estimates (5.61), (5.64), (5.66), and (5.67), that

�|&S } E�+�KS +divS c=0 (5.72)

on S, with

|=&&#++W (#)(E), S=
�W (#)

�E
(E), �=�� (m), c=&

���
�m

(m)

(5.73)

A more conventional approach to deriving the generalized Gibbs�
Thomson relation (5.72) involves using the Fredholm alternative. Specifi-
cally, rewriting (5.39) in the form
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*(m) &� in
1 & f "(& in

0 ) & in
1 =\&+ in

0 ,

\=&divS \&� in
0 \*(m) m+

1
2

�*
�m

(m)++&({S&� in
0 ) } \ �*

�m
(m)+

and recognizing that &� in0 satisfies the homogeneous equation *(m) &� in
0 &

f "(& in
0 ) & in

0 =0, which results on differentiating (5.38)1 with respect to r, we
see that \ and &� in

0 must be orthogonal:

|
+�

&�
\&� in

0 dr=0

Evaluating this integral then yields (5.72). Our derivation seems more
intuitive and closer to the underlying physics, as it establishes the normal
configurational force balance of the sharp-interface theory by integrating,
across the layer, the counterpart of that balance for the diffuse-interface
theory.

5.5. Modification to Account for Dissipation at the Interface

To account for dissipation at the interface, we merely consider the
more general theory with transition kinetics as developed in Section 4.3
and supplement the constitutive scaling relations (5.4) with

B(m=)=
L2

$T
B*(m*) (5.74)

in which case, the balance (5.58) is modified to read

m= } (div Cbu
= +&={+=)+9 xs

= K=+div cxs
= + gxs

= +div(@ xs
= m=)=0 (5.75)

with Cbu
= , 9 xs

= , cxs
= , and @xs

= as defined in (5.59) and

gxs
= =&= |{&= | 2 B(m=) V= (5.76)

Then, introducing the constitutive connection

b(m)=
B(m)

- *(m) |
&;

&:

- f (&) d& (5.77)

and arguing as above yields results of Section 5.4.3, with (5.72) replaced by

�|&S } E�+�KS +divS c+ g=0, g=&b(m) VS (5.78)

on S.
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APPENDIX A. SOME LEMMAS

Let W and V be vector spaces. Further, let H and L be mappings
from W into V with H continuous and L linear, and assume that H and
L are consistent with the generalized flux inequality

H(w) } Lw�0 for all w in W (A.1)

The following Lemmas, which are included here for completeness,
appear also in Gurtin (1989).

Lemma 1. Let L be onto (i.e., assume that V=Rg(L)=range
of L). Then, given any element w of W,

Lw=0 implies H(w)=0 (A.2)

Proof. Assume that Lw=0. Then, since L is linear, if we expand
`(q)=H(q) } Lq with q=w+*z, *>0, divide by *, and let * � 0, we find
that H(w) } Lz�0 for every z in W. Since L is onto, there is a z such that
Lz=H(w), which yields H(w)=0. K

Lemma 2. Assume that H is linear and that (A.2) holds. Then there
is a positive semi-definite linear transformation M from Rg(L) into Rg(L)
such that

Hw=&Mv whenever v=Lw (A.3)

Proof. Choose v of Rg(L). Assume that w1 and w2 are such that v=
Lw1=Lw2 . Let w12=w1&w2 . Then Lw12=0, so that, by (A.2), Hw12=0;
thus, since H is linear, Hw1=Hw2 . It is therefore meaningful to define
M: Rg(L) � Rg(L) as follows: for any v in Rg(L) choose some (the choice
is immaterial) w in W such that v=Lw and define M(v)=&Hw. It is then
a simple matter to verify that M is linear and positive semi-definite. K

We now apply these results to establish generalizations of Fick's law.

1. Paragraph following (2.53). Fix (&, E) and suppress it in what
follows; (2.45) and (2.53) then take the form

h� a(p, G) } sa�0, sa=*abpb+Aa : G, s={+, p={& (A.4)

To apply the lemmas, let W be the space of all pairs w=(p, G),
let V be the space of all lists s=(s1, s2,..., sA) (and hence all lists
h=(h1, h2,..., hA)), take H=h� (so that H maps W continuously
into V, and take L: W � V to be the linear mapping of (p, G)
into s specified in (A.4). Then the flux inequality reduces to (A.1).
Further, L is onto if the matrix with entries }ab is invertible or
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more generally, if, given any m in V, there is a pair (p, G) that
delivers m through the second of (A.4). We now show that this
will be so if the stress-composition moduli are nontrivial. Thus
choose s, choose an arbitrary species a (and suppress it where con-
venient), let v=sa and take p=0. Then we must show that there
exists a G such that A : G=v, or in components Aij Gijk=vk , bear-
ing in mind that G should satisfy Gijk=Gikj . Since A is symmetric
and A{0, we may assume, without loss in generality, that A is
diagonal with A11{0. Then G with all components zero except
G11k=G1k1=vk �A11 (k=1, 2, 3) is a solution of A : G=v. Thus,
given any of the hypotheses of the paragraph following (2.53),
L is onto, so that, by Lemma 1, (A.2) is satisfied. Granted this, if
the atomic flux is quasi-linear, then H is linear. Then the hypo-
theses of Lemma 2 are satisfied, so that the conclusion of (A.3)
holds; but this is just Fick's law (2.52).

2. Paragraph containing (2.61). The mapping L is defined by
(s, G) � s.
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